• Title/Summary/Keyword: 미수화시멘트

Search Result 14, Processing Time 0.018 seconds

A Study on the Strength and Fracture Toughness of High Strength Hardened Cement Paste (고강도 시멘트 경화체의 강도 및 파괴인성에 관한 연구)

  • 김정환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.151-158
    • /
    • 1994
  • In this work, in order to inrprove the flexural strength of hardened portlarid cerncrit paste, mix ing water was reduced to water ccrnent ratio of 0.1 aid water soluble polymer such as hydroxy propyl methyl cellulose was adclelri to the paste to obtain a better dispersion. The paste was kneaded by the twin roll mill for cornpact and homogeneous mixing. The high strength mechanism of the hardened cement paste may be due to the removal of macropores larger than 100${\mu}m$, the reduction of capillary pores acting as the passage of crack propagation, the increase of Young's moculus with iticrease of unhytlratcci cenxxnt ard the incicasc of fracture toughnevs with the crack toughening mechanism (grain bridging, polymer fibril bridging and fritional inter-locking).

Study on pH Reducing Method of Recycled Fine Aggregate for Embanking or Covering (성복토용 순환잔골재의 pH 저감방법에 관한 연구)

  • Han, Min-Cheol;Han, Dongyeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The aim of the research is to suggest an economical and sustainable method of reducing pH of recycled aggregate as an embanking and a covering materials. Because of the unhydrated cement based materials on the surface of the recycled aggregate, it causes a severe problem on environment with leaked high alkali water from embankment and covering by using recycled aggregate. In this research, to reduce the pH of recycled aggregate, regarding the recycled fine aggregate, eight different methods were tested and analyzed with three different categorized: natural treatment, artificial treatment, and chemical treatment. From the results of experiment, it was considered that the most efficient method of reducing pH of recycled aggregate was the chemical treatment using acid such as $CO_2$ acceleration or monoammonium phosphate (MAP), and diammonium phosphate (DAP). Especially, using MAP and DAP, fertilizers, is the most efficient method of reducing pH with its time duration and performance.

Prediction of Percolation Threshold for Electrical Conductivity of CNT-Reinforced Cement Paste (CNT 보강 시멘트 페이스트의 전기전도에 관한 침투임계점 예측)

  • Lee, Seon Yeol;Kim, Dong Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.235-242
    • /
    • 2022
  • The percolation threshold of the CNT-reinforced cement paste is closely related to the optimal CNT amount to maximize the sensing ability of self-sensing concrete. However, the percolation threshold has various values depending on the cement, CNT, and water-to-cement ratio used. In this study, a percolation simulation model was proposed to predict the percolation threshold of the CNT-reinforced cement paste. The proposed model can simulate the percolation according to the amount of CNT using only the properties of CNT and cement, and for this, the concept of the number of aggregated CNT particles was used. The percolation simulation consists of forming a pre-hydrated cement paste model, random dispersion of CNTs, and percolation investigation. The simulation used CNT-reinforced cement paste with a water-cement ratio of 0.4 to 0.6, and the simulated percolation threshold point showed high accuracy with a simulation residual ratio of up to 7.5 % compared to the literature results.

The Effect of Electrochemical Treatment in Lowering Alkali Leaching from Cement Paste to an Aquatic Environment: Part 2- Microscopic Observation (전기화학적 기법을 통한 시멘트페이스트의 수중노출에 따른 알칼리이온 침출저감 효과: Part 2- 미세구조 분석)

  • Bum-Hee Youn;Ki-Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.145-152
    • /
    • 2023
  • In this study, microscopic observation was made on the surface of cement paste immersed in an aquatic environment for 100 days at electrochemical treatment to mitigate the leaching of alkali ions. To quantitatively rank the hydration products, unhydrated grains and porosity in the interfacial region, the backscattered electron(BSE) images were obtained by scanninng electron microscopy. As a result, it was found that the porosity on the surface was significantly reduced by the electrochemical treatment, while unhydrated grains were more or less increased presumably limited hydration reaction under electric charge. At electrochemical treatment, Ca2+ ions present in C-S-H gel could be precipitated with OH- to form Ca(OH)2 then to lower C-S-H gel and simultaneously to enhance Ca(OH)2. Substantially, the risk of alkali leaching could be lowered by the limited ionized matrix under electrochemical treatment.

Properties of carbonated green construction materials by changes in processing conditions (공정조건 변화에 따른 탄산화 녹색건자재의 물성)

  • Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.152-160
    • /
    • 2013
  • The purpose of this study is to enhance the mechanical strength of specimens containing fly ash from fluidized bed type boiler, which the recycling rate will be eventually increased. Specimens containing fly ash in a certain portion were made and aged for 3, 14, and 28 days. Specimens were carbonated under the supercritical condition at $40^{\circ}C$. The carbonation process under the supercritical condition was performed to enhance the mechanical property of specimens by filling the voids and cracks existing inside cement specimen with $CaCO_3$ reactants. The additional aging effect after the supercritical carbonation process on mechanical strength of specimens was also investigated by comparing the compressive strength with and without 7 day extra aging. Under the supercritical condition and additional 7 day aging specimens were very effective for enhancement of mechanical strength and compressive strength increased by 44 %.

The Effects of Hydration Retarding of Portland Cement by $MgSiF_6.6H_2O$ (규불화마그네슘에 의한 포틀랜드 시멘트의 수화 지연효과)

  • 한상호;이경희;정성철;김남호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.163-170
    • /
    • 1997
  • The retarding effects of MgSiF6.6H2O on the hydration of portland cement were studied. The setting time, flow value and compressive strength of mortar were measured and the mechanism of retardation was also studied by ion concentration in solution, SEM, BET, and X-ray diffraction. The results are as follows ; 1. Setting time was delayed by the addition of MgSiF6.6H2O. 2. The flow value of mortar decreases depending upon the amount of MgSiF6.6H2O. 3. The compressive strength was almost same or some increase on 28 days hydration. 4. The main retardation mechanism of MgSiF6 on the hydration of portland cement may be explained by the following hypothesis. MgSiF6 depressing the Ca++ and K+ ion concentration of cement paste solution be-cause of the recrystalization of K2SiF6 and CaF2 phase. The new products of K2SiF6 and CaF2 deposit on the surface of unhydrated cement powder and harzard the mass transfer through these layer. The low con-centration of Ca++, K+ ion in solution was decreasing the hydration rate of portland cement.

  • PDF

The Surface Sealing Performance of Film, Air cap and Polystyrene foam for Preventing Carbonation of High-Volume Slag Concrete (고로슬래그 미분말 다량치환 콘크리트의 탄산화 억제를 위한 기밀성 향상재 부착효과)

  • Han, Dongyeop;Kim, Kyunghoon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • The goal of this research was evaluating and suggesting the solution of preventing carbonation of concrete replaced high-volume of slag. The concrete mixtures were prepared with high-volume slag and recycled aggregate, and the concrete samples were evaluated the carbonation depth with various surface treatment methods. For various surface treatment methods and surface protecting sheets, bonding strength and carbonation depth were measured. Basically, from the results, the carbonation of concrete was completely prevented with any type of surface treatment method and surface protecting sheet as far as the surface treatment materials were remained. Therefore, in this research, it was known and suggested that the easiness of handling and sufficient bonding performance was much important than the quality of surface protecting sheets.

Effect of Recycled Aggregates Powder on the Properties of Zero Cement Mortar Using the Recycled Fine Aggregates and Fly-Ash (순환잔골재와 플라이애시를 사용하는 무 시멘트 모르타르의 특성에 미치는 순환골재 미분말의 영향)

  • Park, Kyung-Taek;Son, Seok-Heon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • The purpose of this study was to investigate the influence of recycled aggregates powder (RP) contents on recycled aggregates (RA) using fly-ash (FA) mortar in a condition of zero cement targeting earth filling materials, and the results can be summarized as follows. First, there was a tendency that as RP contents increased, W/B and air contents increased also. In the case of compressive strength, the strength was hardly developed at the early age, which was prior to 14 days; however, with the starting point of 14 days of age, strength of around 1.5~2.0 MPa was developed when it arrived at 28 days. At a curing temperature of $20^{\circ}C$, the more RP contents increased, the more the compressive strength increased in comparison with FA 100% at all levels except RP 100 %, showing the highest compressive strength at RP 25 %. At a curing temperature of $35^{\circ}C$, the temperature-dependence appeared to be large, as the RP contents were decreased compared to the curing temperature of $20^{\circ}C$. In addition, based on SEM analysis, this study was able to confirm that a pozzolanic reaction formed by an alkali stimulus of RA with the lapse of certain days even in 100 percent FA, causing the densification of tissues, and with RP 25%, hydrate was created the most densely by the hydration of unhydrated cement particles and pozzolanic reaction of FA.

Water Permeability Performance Evaluation of Mortar Containing Crack Self-healing Mineral Admixtures (균열 자기치유 재료 혼입 모르타르의 투수성능 평가)

  • Lee, Woong-Jong;Hwang, Ji-Soon;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.463-469
    • /
    • 2016
  • In this paper, compressive strength and water permeability performance for two types of crack self-healing materials such as SH-PO-0 composed of mineral admixtures(expansive agent, swelling material and crystal growth agent) and SH-PO-(5, 15, 30) blended with SH-PO-0 and phosphate additive(PO) dissolving easily calcium ion, were evaluated. The test results show that the water flow of SH-PO-0 decreased steeply at the early age although compressive strength decreased about 9% at 28 days compared with OPC. The higher PO replacement ratio is, the lower compressive strength and more improved water permeability performance is, and thus, based on such results, adequate PO replacement ratio is 15%. It is also found that the self-healing performance of SH-PO-15 was quite improved at the early ages and however, the performance of SH-PO-15 is similar to one of SH-PO-0 at long-term ages, and 28 days compressive strength of SH-PO-15 decreased about 8% compared with SH-PO-0. In addition, it is confirmed from the analysis of SEM-EDS that calcium ions of SH-PO-15 were crystallized more than those of SH-PO-0.

Effect of Fine Particle Cement and Recycled Aggregates as Alkali Activator on the Engineering Properties and Micro-Structure of High Volume Blast Furnace Slag Concrete (알칼리 자극제로서 미분시멘트와 순환골재가 고로슬래그 다량치환 콘크리트의 공학적 특성 및 미세구조에 미치는 영향)

  • Han, Min-Cheol;Lee, Hyang-Jae;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.602-608
    • /
    • 2013
  • The aim of this study is to investigate experimentally the effect of the combination of fine particle cement with high Blaine fineness (FC) and recycled aggregates on the engineering properties and micro structure of high volume blast furnace slag (BS) concrete with 75% BS and 21 MPa. FC manufactured by particle classification at the plant with Blaine fineness of more than $7000cm^2/g$ was used as additional alkali activator for high volume blast furnace slag concrete made with recycled fine and coarse aggregates. FC was replaced by 15, 20 and 25% OPC. Test results showed that the incorporation of FC resulted in an increase in the compressive strength compared to BS concrete without FC by as much as 30% due to accelerated hydration and associated latent hydraulic reaction. It was found that the use of FC and recycled aggregates played an important role in activating BS for high volume BS concrete by offering sufficient alkali.