• Title/Summary/Keyword: 미소전극

Search Result 64, Processing Time 0.024 seconds

Measurement of Ion Concentrations in Denitrifying Biofilm by Microelectro-sensor (미소전극 센서를 이용한 탈질 생물막내의 이온 농도측정)

  • Jang, Am;Lee, Ssang G.;Kim, S.M.;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1833-1841
    • /
    • 2000
  • Microelectrode probe was made and applied to the biofilm in the biological treatment process as the state-of-art technology in order to actually measure the biofilm thickness, ionic concentration gradient, and material transport, etc. instead of classical theoretical approach. The working microelectrode, one of the main components of microelectrode probe, was easily contaminated and broken when determining the differences in the ionic concentrations through the measurement of biofilm's EMF (electromotive force). As a demonstration, two microelectrode probes were constructed in our lab for the measurement of the pH and $NO_3{^-}$ concentration in denitrifying biofilm. The microelectrode probe through the inner biofilm ($350{\mu}m$ from the surface of biofilm) showed that the pH was increased from pH 8 in the bulk solution to pH 8.3, on the other hand, the $NO_3{^-}$ concentration was decreased from 30 fig N/L in the bulk solution to 4 fig N/L.

  • PDF

Electrochemical Reduction of Thionyl Chloride : Catalytic Effects of Metalomacrocyclic Compounds (SOCl$_2$의 전기화학적 환원 : 금속-거대고리 화합물의 촉매효과)

  • Woo-Seong Kim;Yong-Kook Choi;Chjo Ki-Hyung
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.744-752
    • /
    • 1993
  • Electrochemical reduction of thionyl chloride has been carried out at glassy carbon and microelectrode that modified by macrocyclic compounds. The catalyst molecules of macrocyclic compounds were adsorbed on the electrode surface and reduced thionyl chloride resulting in a generation of oxidized catalyst molecules. The concentration of catalysts and electrode immersion time were found to affect the catalyst performance strongly. Significant improvements in cell performance have been noted in terms of both exchange rate constants of up to 10 times and power densities of up to 220% at glassy carbon electrode. The diffusion coefficients obtained at carbon microelectrode were slightly different from that determined at glassy carbon electrode.

  • PDF

Non-Contacting Capacitive Sensor with 4-Electrodes for Measuring Small Displacement (미소변위 측정용 비접촉식 4-전극형 전기용량 센서)

  • Lee, Rae-Duk;Kim, Han-Jun;Park, Se-Il;Semyonov, Yu. P.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 1998
  • Non-contacting capacitive sensors, based on principle of the cross capacitor, for measuring small displacement less than $1.95{\pm}0.5\;mm$ have been fabricated and characterized. To overcome disadvantages of the existed capacitive sensors with 2-electrodes and 3-electrodes, the new sensor is consisted of 4-electrodes which are formed two electrode(high, low) and 2 guard electrodes on a sapphire plate with diameter 17 mm and thickness 0.7 mm, and are symmetrically situated with a constant gap of 0.2 mm between the electrodes. This sensor can be used for measuring both metallic and non-metallic target without ground connection, and is evaluated to the correlation coefficient of 0.9987 for the range of $1.95{\pm}0.5\;mm$ and that of 0.9995 for $1.95{\pm}0.25\;mm$ range.

  • PDF

Prebreakdown Field Emission of Micrometric Vacuum Gaps under DC Voltage (직류 전압에 의한 미소 진공갭의 전구방전 전계방출)

  • 김정달;이세훈
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.56-63
    • /
    • 1997
  • 진공에서의 파괴는 파괴전구현상으로부터 개시되고, 파괴전구현장중에서 가장 중요한 과정은 Metallic Field Electron Emission과 Micro Discharge이다. 진공내에서 평등전계 갭의 전기적 파괴특성 중 전극에 흐르는 방전전구전류는 전계에 의존하고 Fowler Nordheim 식으로 나타낼 수 있다. 이 논문은 압력 760, 1.2$\times$10-3, 1.2$\times$10-5[torr]과 스테인레스 전극을 미소갭 20, 50, 75, 100[$\mu\textrm{m}$]으로 구성하여 방전전구전류에 대해서 실험적으로 연구했다. 전극갭과 압력변화에 따라 얻어진 I-V 특성곡선을 Fowler Nordheim의 전계방출 이론에 입각해서 분석한 결과, 진공중 미소갭의 전기적 파괴기구는 Metallic Field Electron Emission (M-FEE)에만 의존되었다.

  • PDF

Carbon Sphere/Fe3O4 Nanocomposite for Li/air Batteries (리튬/공기 이차전지용 카본미소구체/Fe3O4 나노복합체)

  • Park, Chang Sung;Park, Yong Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • In this article, we report the fabrication and characterization of carbon sphere/$Fe_3O_4$ nanocomposite for Li/air batteries. $Fe_3O_4$ nanoparticles are dispersed homogeneously on the surface of carbon spheres in an attempt to enhance the low conductivity of oxide catalyst ($Fe_3O_4$). The carbon sphere/$Fe_3O_4$ nanocomposite could offer wide surface area of $Fe_3O_4$ and increased carbon/catalyst contact area, which lead to enhanced catalytic activity. The electrode employing carbon sphere/$Fe_3O_4$ nanocomposite presented relatively low overpotential and stable cyclic performance compared with the electrode employing carbon sphere.

Characterization of Signal Measuring System Using ion Selective Microelectrode and Electrometer (이온 선택성 미소전극과 전위계를 이용한 신호 계측 시스템의 특성 평가)

  • Jun, Hyo-Yong;Seon, Kyeong-Suk;Park, Jeung-Jin;Byun, Im-Gyu;Park, Tae-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1148-1153
    • /
    • 2006
  • Signal measuring system to analyze ion concentrations in biofilm was constructed with ion selective microeleclrode and electrometer. In order to evaluate the performance and applicability of signal measuring system, the following characteristics, such as slope of calibration curve, detection limit, variation of response according to the time, and potentiometric selectivity coefficient, were investigated. The slope of calibration curve showed high degree of association for primary ion concentration. The response of the system was log-linear in standard solution down to $10{\mu}M$ and signal measuring system was not sensitive for interfering ions. In comparison with commercial electrometer, the fabricated electrometer system had similar tendencies for the slope of calibration curve, detection limit, and response time. Therefore the signal measuring system could be used to investigate ion profiles in biofilm as a cost effective and reliable measuring system.

A Basic Study on Micro-Electric Potential accompanied with Specimen Failure during Uniaxial Compressive Test (일축 압축에 의한 시료 파괴 시 수반되는 미소 전위에 대한 기초 연구)

  • Kim, Jong-Wook;Park, Sam-Gyu;Song, Young-Soo;Sung, Nak-Hun;Kim, Jung-Ho;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2007
  • As a part of basic studies on monitoring of landslides and slope stability using SP measurements, micro-electric potentials of rock samples were measured accompanied with the rock failure by a uniaxial loading test were measured. The measurement system consists of a 8 channel A/D converter with 24 bit resolution, uniaxial loading tester, strain gages and 4 sets of electrode attached to a rock sample. Rock samples of granite, limestone, and sandstone were tested. Also, mortar samples were tested in order to monitor electric-potentials of a uniform sample. Micro-electric potentials were detected in all saturated samples and the strength of them increased as the loading force increased. Sandstone samples showed the largest strength of micro-electric potential and it followed limestone and granite samples, which indicates a positive relationship with porosity of rocks. The mechanism generating these micro-electric potential can be explained in terms of electro-kinetics. In case of dry samples, micro-electric potential could be observed only in sandstone samples, where piezoelectric effect played main role due to high contents of quartz in sandstone samples. We found that biggest micro-electric potentials were observed at the electrodes near the crack surface of rock samples. This is very encouraging result that SP monitoring can be applied to predicting landsliding or to estimate collapsing position combining with monitoring of acoustic emissions.

Electrochemical Template Synthesis of Conducting Polymer Microstructures at Addressed Positions (템플레이트의 국소 위치에 형성된 전도성 고분자 미세구조물의 전기화학 합성)

  • Lee Seung Hyoun;Suh Su-Jeong;Yun Geum-Hee;Son Yongkeun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 2004
  • The nano or micro sized structures of conducting polymer had been prepared by synthesizing the desired polymer within the pores of template of nano or micro porous membrane filter. In this study, we had tried to fabricate conducting polymer microstructures on an electrode by using electrochemical deposition adopting template synthesis. Our attention was focused on two different things, attaching template on the electrode and fabricating microstructures only at limited areas of the electrode. A conducting polymer, PEDiTT (poly 3,4-ethylenedithi-athiophene) solution was blended with PVA(polyvinyl alcohol) solution and used as an conducting adhesive. After attaching template membrane, the electrode were immersed in 0.5M pyrrole in 0.1M KCI solution, and electrochemical polymerization was performed. The growth process of the microstructures studied by SEM. The electrochemical fabrication of conducting polymer was performed by using two-electrode system. A large working electrode and a micro scale disc electrode were used for the confined area synthesis. Polymerization potential was 4V in an electrolytic solution made of KCI in deionized water. The optimum polymerization conditions were, i.e. (4V/100sec) for $250{\mu}m$ electrode and (6V/30 sec) for $10{\mu}m$ electrode.

각도를 가지는 전극 구조를 가지는 DBD 방전에서 전극 간격과 압력 변화에 따른 방전 특성 연구

  • Sim, Seung-Bo;Bae, Hyo-Won;Lee, Ho-Jun;Lee, Hae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.500-500
    • /
    • 2012
  • 플라즈마 디스플레이 패널(PDP)는 미소체적의 dielectric barrier discharge (DBD)를 이용한 한 예로 볼 수 있다. PDP 셀은 실험을 통하여 방전 특성을 분석하기에 아주 작은 크기이기 때문에 시뮬레이션을 이용하는 것이 방전 특성을 분석하기에 유용하다. 시뮬레이션 방법 중 유체 시뮬레이션은 높은 압력에서 기체 방전을 분석하기에 아주 유용한 방법이다. PDP 전극 각도를 바꿈으로써 발광 효율을 높일 수 있음이 논문으로 발표 되었다. 이 발표에서는 2차원 유체 시뮬레이션을 사용하여 전극의 각도 변화뿐만 아니라 전극 간격과 압력 변화에 따른 방전 특성 변화를 연구하였다. 평판 전극의 각도 변화에 따라 전기장 세기, 방전 공간 내 전하 및 여기된 입자수 및 분포, 방전 개시 전압 등의 진단을 통하여 결과를 분석하였다. 전극 간격이 길어질수록 convex 구조의 효율 증가가 크게 나타났으며 압력이 커질수록 concave 구조의 효율 증가가 크게 나타났다.

  • PDF