DOI QR코드

DOI QR Code

Carbon Sphere/Fe3O4 Nanocomposite for Li/air Batteries

리튬/공기 이차전지용 카본미소구체/Fe3O4 나노복합체

  • Park, Chang Sung (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • 박창성 (경기대학교 신소재공학과) ;
  • 박용준 (경기대학교 신소재공학과)
  • Received : 2014.03.28
  • Accepted : 2014.03.31
  • Published : 2014.05.31

Abstract

In this article, we report the fabrication and characterization of carbon sphere/$Fe_3O_4$ nanocomposite for Li/air batteries. $Fe_3O_4$ nanoparticles are dispersed homogeneously on the surface of carbon spheres in an attempt to enhance the low conductivity of oxide catalyst ($Fe_3O_4$). The carbon sphere/$Fe_3O_4$ nanocomposite could offer wide surface area of $Fe_3O_4$ and increased carbon/catalyst contact area, which lead to enhanced catalytic activity. The electrode employing carbon sphere/$Fe_3O_4$ nanocomposite presented relatively low overpotential and stable cyclic performance compared with the electrode employing carbon sphere.

본 논문에서는 리튬/공기 이차전지의 공기전극에 사용될 수 있는 카본미소구체/$Fe_3O_4$ 나노복합체의 합성과 전기화학적 특성에 대해 보고하고 있다. 산화물 촉매 중 하나인 $Fe_3O_4$의 부족한 전도성을 보완하기 위해 카본미소구체와 복합화를 시도하였고 그 결과 카본미소구체 표면에 수 nm 크기의 $Fe_3O_4$를 균일하게 분산시켜 복합화 할 수 있었다. 이와 같이 미세하게 분산된 산화물 촉매와 카본과의 결합은 촉매의 비표면적을 넓히고 카본과 촉매와의 접촉면을 넓혀 전도성을 높임으로서 높은 촉매 활성을 기대할 수 있다. 카본미소구체/$Fe_3O_4$ 나노복합체를 이용하여 만든 전극은 카본미소구체를 사용한 전극에 비해 낮은 과전압과 상대적으로 안정한 사이클 특성을 관찰할 수 있었다.

Keywords

References

  1. A. Kraytsberg and Y. E. Eli, J. Power Sources 196, 886(2011) https://doi.org/10.1016/j.jpowsour.2010.09.031
  2. R. Black, B. Adams, and L. F. Nazar, Adv. Energy Mater. 2, 801(2012) https://doi.org/10.1002/aenm.201200001
  3. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Nat. Mater. 11, 19(2012)
  4. R. R. Mitchell, B. M. Callant, G. V. Thompson, and Y. Shao-Horn, Energy Environ Sci. 4, 2952(2011) https://doi.org/10.1039/c1ee01496j
  5. A. Zahoor, M. Christy, Y. J. Hwang, and K. S. Nahm, J. Electrochem. Sci. Technol. 3, 14(2012) https://doi.org/10.5229/JECST.2012.3.1.14
  6. H. D. Lim, K. Y. Park, H. Song, E. Y. Jang, H. Gwon, J. Kim, Y. H. Kim, M. D. Lima, R. V. Robles, X. Lepro, R. H. Baughman, and K. S. Kang, Adv. Mater. 9, 1348(2013)
  7. T. H. Yoon and Y. J. Park, J. Power Sources. 244, 344(2013) https://doi.org/10.1016/j.jpowsour.2013.01.023
  8. J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, and J. Cho, Adv. Energy Mater. 1, 34(2011) https://doi.org/10.1002/aenm.201000010
  9. H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, and B. Scrosati, Nature Chemistry. 4, 579(2012) https://doi.org/10.1038/nchem.1376
  10. W. H. Ryu, T. H. Yoon, S. H. Song, S. Jeon, Y. J. Park, and I. D. Kim, Nano Lett. 13, 4190(2013) https://doi.org/10.1021/nl401868q
  11. C. S. Park, K. S. Kim, and Y. J. Park, J. Power Sources. 244, 72(2013) https://doi.org/10.1016/j.jpowsour.2013.03.153
  12. D. S. Kim and Y. J. Park, J. Alloys Compd. 575, 319(2013) https://doi.org/10.1016/j.jallcom.2013.05.178
  13. C. S. Park, J. H. Kim, and Y. J. Park, J. Electroceram. 31, 224(2013) https://doi.org/10.1007/s10832-013-9831-y
  14. H. D. Lim, H. L. Song, H. J. Gwon, K. Y. Park, J. S. Kim, Y. J. Bae, H. S. Kim, S. K. Jung, T. W. Kim, Y. H. Kim, X. Lepro, R. O. Robles, R. H. Baughman, and K. S. Kang, Energy Environ Sci. 6, 3570(2013) https://doi.org/10.1039/c3ee41910j
  15. D. Su, H. S. Kim, W. S. Kim, and G. Wang, J. Power Sources. 244, 488(2013) https://doi.org/10.1016/j.jpowsour.2012.11.024
  16. C. Zhan, J. Lu, A. Jeremy Kropf, T. Wu, A. N. Jansen, Y. K. Sun, X. Qiu, and K. Amine, Nature Communications. 4, 2383(2013)
  17. K. N. Jung, A. Riaz, S. B. Lee, T. H. Lim, S. J. Park, R. H. Song, S. E. Yoon, K. H. Shin, and J. W. Lee, J. Power Sources. 244, 328(2013) https://doi.org/10.1016/j.jpowsour.2013.01.028
  18. H. D. Lim, H. J. Gwon, H. G. Kim, S. W. Kim, T. H. Yoon, J. W. Choi, S. M. Oh, and K. S. Kang, Electrochimica Acta. 90, 63(2013) https://doi.org/10.1016/j.electacta.2012.12.020
  19. K. S. Kim and Y. J. Park, Solid State Ionics. 225, 513(2012) https://doi.org/10.1016/j.ssi.2012.01.004
  20. K. S. Lee, S. T. Myung, H. J. Bang, K. Amine, D. W. Kim, and Y. K. Sun, J. Power Sources. 189, 494(2009) https://doi.org/10.1016/j.jpowsour.2008.11.062
  21. Y. M. Kang, S. M. Lee, M. S. Sung, G. J. Jeong, J. S. Kim, and S. S. Kim. Electrochimica Acta. 52, 450(2006) https://doi.org/10.1016/j.electacta.2006.05.026
  22. N. Venugopal, D. J. Lee, Y. J. Lee, and Y. K. Sun, J. Mater. Chem. A, 1, 13464(2013)
  23. A. Debart, A. J. Paterson, J. Bao, and P. G. Bruce, Angew. Chem. 47, 4521(2008) https://doi.org/10.1002/anie.200705648
  24. B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshoj, J. K. Norskov and B. M. Gallant, R. R. Mitchell, D. G. Kwabi, J. Zhou, L. Zuin, C. V. Thompson, Y. Shao-Horn, J. Phys. Chem. C. 116, 20800(2012). https://doi.org/10.1021/jp308093b
  25. M. O. Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu and P. G. Bruce, Nature Mater. 12, 1050(2013). https://doi.org/10.1038/nmat3737

Cited by

  1. Electrochemical Property of CNT/Co3O4Nanocomposite for Anode of Lithium Batteries vol.17, pp.3, 2014, https://doi.org/10.5229/JKES.2014.17.3.187