• Title/Summary/Keyword: 미소기계

Search Result 432, Processing Time 0.029 seconds

Analysis of small surface crack growth of round bar under rotary bending stress (회전굽힘응력하에서 환봉재의 미소표면균열의 성장거동해석)

  • Oh, Hwan-Seop;Lee, Byeong-Gwon;Park, Cheol-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.160-169
    • /
    • 1998
  • The purpose of this study for the prediction of fatigue crack propagation behavior, Stress Intensity Factor(F) of round bar with 3-Dimensional half circular, semi-elliptical icro surface crack under rotary bending stress for the variable aspect, size, rotation angle was analyzed by Boundary Element Method (BEM). It is predicted that behavior of crack growth is half circular or circular crack (b/a.geq.1) and propagate to b/a.leq.0.85.

Small Fatigue Crack Measurement and Crack Growth Characteristics for Smooth and Notch Specimens (평활 및 노치재의 미소피로균열측정과 성장특성)

  • 이종형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2145-2152
    • /
    • 1993
  • The objective of this paper is to examine the detection limit, growth characteristics and notch curvature radius in short crack problem. Measurement techniques such as ultrasonic method and back-face strain compliance method were adopted. The fatigue crack growth rate of the short crack is slower than that of a long crack for a notched specimen. The characteristic of crack growth and crack closure is same as the case of a delay of crack growth caused by constant amplitude load for an ideal crack or single peak overload for a fatigue crack. The short crack is detected effectively by ultrasonic method. A short surface crack occurs in the middle of specimen thickness and is transient to a through crack depth is larger than the notch curvature radius.

Numerical Analysis on Mixing in T type Microchannel using Throttling (스로틀링을 이용한 T형 미소 채널에서의 혼합에 관한 수치 해석적 연구)

  • Jang, Ji-Hwan;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1516-1521
    • /
    • 2004
  • Mixing in Y-channel micro mixer is analyzed through computational fluid dynamics. In the case of passive mixing, we investigate the effect of geometric parameters on the mixing efficiency, such as shape of throttling geometry and angle between two inlets. Mixing performance improves as two fluids join not just horizontally but both vertically and horizontally, and it also improves when channel follows throttling shapes. A numerical results substantiate the highly efficient mixing performance. It is highly beneficial to fabrication process since the proposed throttling geometry is simple, but allows high mixing ratio.

  • PDF

Haircell-inspired Micromechanical Active Amplifiers Using the Mechanical Resonance Modulated by Variable Stiffness Springs (청각 유모세포를 모사한 미소기계적 능동 증폭기)

  • Heo, Yun-Jung;Lee, Won-Chul;Kim, Tae-Yoon;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1077-1082
    • /
    • 2007
  • We present a micromechanical active amplifier, inspired from the principle of the outer hair cells in cochlea, amplifying both displacement and force. The present micromechanical active amplifier modulates the resonant carrier motion using the variable stiffness spring whose stiffness changes proportionally to the input motion. We design, fabricate, and characterize two types of the amplifiers A and B, each having the variable stiffness spring fur the maximum displacement gain and force gain, respectively. In the experimental study, the amplifier A shows the displacement gain of 5.62, which is 2.15 times larger than that of the amplifier 3. The amplifier B shows the force gain of 10.0, resulting in 1.26 times larger value compared to that of the amplifier A. We experimentally verify that the haircell-inspired micromechanical amplifiers are capable to amplify both displacement and force.

Machining Characteristics of Micro-parts using the Ultra-precision Machine Tools (초정밀 공작기계를 이용한 미소부품의 가공특성)

  • 이재종;이응숙;제태진;이선우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.858-861
    • /
    • 2001
  • As the application fields of micro parts that are micro endo-scope, PDA, and tele-communication had been extended, there are required the micro machine tools and MEMS in order to machining for those parts. In order to machining of the micro parts, the micro machining center is very effective. The micro machining center had some advantages that are lower cost, higher accuracy, and lower required powers than existing machine tools for machining of micro parts. In this study, in order to analyze the machining characteristics and its application possibility of the developing micro machining center with 60,000rpm rotations, 0.1$\mu\textrm{m}$ resolutions, and 80 50 50mm sliding unit, the machining experiment had been executed. In this experimental machining, 0.1~ 0.5mm endmills are used to machining the micro cap and tele-communication's parts. In the future, experimental results will be adapted to the micro-machining center.

  • PDF

Effect of surface roughness on laminar flow in a micro-channel by using lattice Boltzmann method (격자 볼츠만 방법을 이용한 미소채널 내에서의 층류 유동에 대한 표면 거칠기의 영향)

  • Shin, Myung-Seob;Yoon, Joon-Yong;Byun, Sung-Joon;Kim, Kak-Joong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.179-183
    • /
    • 2006
  • Surface roughness is present in most of the microfluidic devices due to the microfabrication techniques. This paper presents lattice Boltzmann method (LBM) results for laminar flow in a microchannel with surface roughness. The surface roughness is modeled by an array of rectangular modules placed on top and bottom side of a parallel-plate channel. In this study, LBGK D2Q9 code in lattice Boltzmann Method is used to simulate flow field for low Reynolds number in a micro-channel. The effects of relative surface roughness, roughness distribution, roughness size and the results are presented in the form of the product of friction factor and Reynolds number. Finally, a significant increase in Poiseuille number is detected as the surface roughness is considered, while the effect of roughness on the microflow field depends on the surface roughness.

  • PDF

Micro droplet driven by thermocapillary and capillary valve (열모세관에 의한 미소액적 구동과 모세관 밸브)

  • Lim, Nam-Hyuk;Kim, Sung-Wook;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1777-1782
    • /
    • 2003
  • This paper presents the design, fabrication, and testing of the capillary-induced pressure drop valve, thermocapillary pumping of liquid droplet in hydrophilic channels and the splitting of droplet. The capillaryinduced pressure drop is derived with thermodynamic approach considering three-dimensional meniscus shape which is essential for calculating pressure drop in the diverging shape channel when the aspect ratio is close to one. The micro channel is fabricated via MEMS processes, which consists of the liquid stop valve to retard the liquid droplet, thermocapillary pumping region and the bifurcation region. Also the micro heaters are fabricated to drive the droplet by thermocapillary. The theoretical approaches agree well with the experimental data. The functionality of capillary valve is confirmed to be valid when the aspect ratio is smaller than one. To overcome the difficulty in splitting of the droplet due to the pressure drop in the general Y-shape channel, the protrusion shape is employed for easy splitting in the bifurcation channel.

  • PDF

Numerical Analysis of the Slip Velocity and Temperature-Jump in Microchannel Using Langmuir Slip Boundary Condition (미소채널내의 Langmuir 미끄럼 경계조건을 통한 미끄럼 속도 및 급격한 온도변화에 관한 수치해석)

  • Kim, Sang-Woo;Kim, Hyun-Goo;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • The slip velocity and the temperature jumps for low-speed flow in microchannels are investigated using Langmuir slip boundary condition. This slip boundary condition is suggested to simulate micro flow. The current study analyzes Langmuir slip boundary condition theoretically and it analyzed numerically micro-Couette flow, micro-Poiseuille flow and grooved microchannel flow. First, to prove validity for Langmuir slip condition, an analytical solution for micro-Couette flow is derived from Navier-Stokes equations with Langmuir slip conditions and is compared with DSMC and an analytical solution with Maxwell slip boundary condition. Second, the numerical analysis is performed for micro-Poiseuille flow and grooved microchannel flow. The slip velocity and temperature distribution are compared with results of DSMC or Maxwell slip condition and those are shown in good agreement.

A Viscoelastic Constitutive Model of Rubber Under Small Oscillatory Loads Superimposed on Large static Deformation (정적 대변형에 중첩된 미소 동적 하중을 받는 고무재료의 점탄성 구성방식에 관한 연구)

  • Kim, Bong-Gyu;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.619-628
    • /
    • 2001
  • A viscoelastic constitutive equation of rubber is proposed under small oscillatory load superimposed on large static deformation. The proposed model is derived through linearization of Simos nonlinear viscoelastic constitutive model and reference configuration transformation. Statically pre-deformed state is used as reference configuration. The model is extended to a generalized viscoelastic constitutive equation including widely-used Mormans model. Static deformation correction factor is introduced to consider the influence of pre-strain on the relaxation function. The model is tested for dynamic behavior of rubbers with different carbon black fractions. It is shown that the constitutive equation with static deformation correction factor agrees well with test results.

A Study on the Effect of Micro Defect on Stress Intensity Factor of Through-Crack by Boundary Element Method (경계요소법을 이용한 관통균열의 응력확대계수에 미치는 미소결함의 영향에 관한 연구)

  • Seong, Gi-Deuk;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.560-566
    • /
    • 2000
  • Many researchers have dealt with the problems of fracture mechanics. Generally, these researches are concerned with crack in isotropic material without other micro defects. Actual structure, however, may contain micro defects as well as crack in manufacture processing or operation. If it contains mi defects near a crack, some different characteristics will be appear in fracture behaviors of the crack. This study examines the effect of the micro defect on stress intensity factor of center slant crack rectangular plate subjected to uniform uniaxial tensile stress. In this study, boundary element method(BEM) is used for analysis in stress intensity factor(SIF).