• Title/Summary/Keyword: 미세 퇴적 구조

Search Result 31, Processing Time 0.041 seconds

Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea (초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석)

  • Minju Kim;Won-Kyung Baek;Hoi Soo Jung;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • This study aims to analyze the micro-sedimentary structures of the Hwangdo tidal flats using ultra-high resolution unmanned aerial vehicle (UAV) data. Tidal flats, located in the transitional area between land and sea, constantly change due to tidal activities and provide a unique environment important for understanding sedimentary processes and environmental conditions. Traditional field observation methods are limited in spatial and temporal coverage, and existing satellite imagery does not provide sufficient resolution to study micro-sedimentary structures. To overcome these limitations, high-resolution images of the Hwangdo tidal flats in Chungcheongnam-do were acquired using UAVs. This area has experienced significant changes in its sedimentary environment due to coastal development projects such as sea wall construction. From May 17 to 18, 2022, sediment samples were collected from 91 points during field surveys and 25 in-situ points were intensively analyzed. UAV data with a spatial resolution of approximately 0.9 mm allowed identifying and extracting parameters related to micro-sedimentary structures. For mud cracks, the length of the major axis of the polygons was extracted, and the wavelength and ripple symmetry index were extracted for ripple marks. The results of the study showed that in areas with mud content above 80%, mud cracks formed at an average major axis length of 37.3 cm. In regions with sand content above 60%, ripples with an average wavelength of 8 cm and a ripple symmetry index of 2.0 were formed. This study demonstrated that micro-sedimentary structures of tidal flats can be effectively analyzed using ultra-high resolution UAV data without field surveys. This highlights the potential of UAV technology as an important tool in environmental monitoring and coastal management and shows its usefulness in the study of sedimentary structures. In addition, the results of this study are expected to serve as baseline data for more accurate sedimentary facies classification.

Microsutructures of Carnonaceous Materials within Illite of the Daedong Group Slate from Jeongok Area, Korea (전곡지역 대동층군 점판암의 일랑트내에 협재된 탄질물의 미세구조)

  • 안중호;조문섭
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • 이 연구에서는 대동층군 탄질 점판암내에 산출하는 탄질물의 미세구조를 고분해능 투과전자현미경(HRTEM)을 이용하여 조사하였다. 관찰된 탄질물은 구조가 부분적으로 흑연화된 흑연화과정의 초기단계 물질로서$ 100\AA$ 이하의 매우 얇은 크기로 일라이트 결정들의 경계면 사이나 일라이트 결정내에 협재되어 나타난다. 탄질물의 층상구조는 휘어있거나 불연속적이며, 부분적으로 원형조직을 보이는 "지문" 조직을 이루고 있다. 이러한 특징은 많은 결함구조를 가지고 구조적으로 충분히 흑연화되지 않은 물질에서 볼 수 있는 전형적인 구조다. 미세한 규모로 협재된 조직을 보이는 탄질물은 퇴적물의 속성작용과 저변성작용시 일라이트가 성장하는 동안에 포획되었거나, 또는 일라이트 이전의 점토광물내에 흡착되었던 물질들로부터 유래된 것으로 보인다. 이처럼 탄질물과 일라이트가 미세한 규모로 협재되어 산출하는 특징은 저변성암에서 일어나는 흑연화작용시 복잡한 미세구조의 변화가 수반되었음을 지시한다. 다양한 미세구조를 보여주는 흑연질 물질의 산출은 탄질물이 고온에서 균질한 흑연으로 생성되기까지 불연속적인 단계를 거쳐 반응할 가능성을 지시한다. 끝으로, 이 연구는 이온 빔을 이용하여 제작한 시료를 관찰함으로써 암석내에 함유된 탄질물들의 조직을 훼손하지 않고 관찰할 수 있음을 보여준다.

  • PDF

Intertidal Flat Sediments and Charateristic Sedimentary Structures in the Changgu Bay, West Coast of Korea (한국 서안 장구만에 발달한 조간만대의 퇴적상 및 퇴적구조)

  • 김준래;박수철
    • 한국해양학회지
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 1985
  • The Changgu Bay, a macrotidal coastal embayment of the west coast of Korea, is an area of extensive intertidal sedimentation. Three types of major sediment facies are identified based on grain size analysis: silt, sandy-silt, and silty-sand facies. It is found that intertidal sediment facies comprise a continuum of progressively finer sediments from lower flat to upper one. The X-radiography of the cores in the intertidal zone show a wide variety of physical and biogenic sedimentary structures. The major structures include bioturbation, current ripple and parallel-laminae. Bioturbations are observed in all core samples, especially in the silt flat zone. The degree of bioturbation increases laterally from sandy facies (low tide level) to silt facies (high tide level) due to favorable properties of fine mud for organisms. The ripple laminae, composed of current ripple foresets, characterize the silty-sand and sandy-silt flats. The parallel laminae are extensively bioturbated, and two types of laminae are distinguishable; thick-laminae with a thickness of 1 to 5mm and thin-laminae with a thickness of less than 1mm.

  • PDF

Temporal and Spatial Variation of Microalgal Biomass and Community Structure in Seawater and Surface Sediment of the Gomso Bay as Determined by Chemotaxonomic Analysis (색소분석을 통한 곰소만 내 해수와 퇴적물 중 미세조류 생체량과 군집구조의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Yoon, Ji-Hyun;Hur, Sung-Bum
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • To compare monthly variations of phytoplankton biomass and community composition between in seawater and sediment of the Gomso Bay (tidal flat: approximately 75%), the photosynthetic pigments were analyzed by HPLC every month in 1999 and every two months in 2000. Ambient physical and chemical parameters (temperature, salinity, nutrients, dissolved oxygen, and chemical oxygen demand) were also examined to find the environmental factors controlling structure of phytoplankton community. The temporal and spatial variations of chlorophyll a concentration in seawater were correlated well with the magnitude of freshwater discharge from land. The biomass of microphytobenthos at the surface sediments was lower than that in other regions of the world and 2-3 times lower than phytoplankton biomass integrated in the seawater column. Based on the results of HPLC pigment analysis, fucoxanthin, a marker pigment of diatoms, was the most prominent pigment and highly correlated with chlorophyll a in seawater and sediment of the Gomso Bay. These results suggest that diatoms are the predominant phytoplankton in seawater and sediment of the Gomso Bay. However, the monthly variation of chlorophyll a concentration in seawater at the subtidal zone was not a good correlation with that in sediment of the Gomso Bay. Although pelagic plankton was identified in seawater by microscopic examination, benthic algal species were not found in the seawater. These results suggest that contribution from the suspended microphytobenthos in the tidal flat to the subtidal zone of the Gomso Bay may be low as a food source to the primary consumer in the upper water column of the subtidal zone. Further study needs to elucidate the vertical and horizontal transport magnitude of the suspended microphytobenthos in the tidal flat to the subtidal zone.

A Microstructural Study on Firing Process of Korean Traditional Ceramics;Punch'ong from Ch'unghyodong, Kwangju (한국 전통 도자기의 번조 공정에 관한 미세구조 연구;광주 충효동 분청사기를 중심으로)

  • Lee, Yeong Eun;Go, Gyeong Sin
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.2
    • /
    • pp.125-138
    • /
    • 2002
  • The kiln at Chollanamdo Kwangjusi Ch'unghyodong, which produced punch'ong and white wares for a period of 70 to 80 years in the 15th century, is examined for their scientific technological param-eters. Punch'ong sherds were divided into seven different groups according to the location and the layer of the waste mounds from which they were excavated. Optical and scanning electron microscope were used for microstructural observations and X-ray diffraction and polarized microscope for mineral characteristics. For determining the firing temperature, sherds were refired at different temperatures and their micro-structural changes were observed. Some wares such as the group CHE2 was high quality wares fired at high emperature around 1200$^{\circ}C$ for palace use, but as the ceramics ware became more widely used and the white wares increasingly preferred over punch'ong, lower quality wares of rougher raw materials were firedat lower temperatures around 1100-1150$^{\circ}C$ in quantity. They used local raw materials of several types, all available locally.

Study on Characteristics for Local Deposit of Sediment by Surveying River Bed's Layer History in High Berm of River Channel (하도 층구조 이력조사를 통한 하도내 국지퇴적 특성 분석)

  • Ryu, Young-Hoon;Lee, Sam-Hee;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.883-891
    • /
    • 2010
  • More recently, there have been significant changes in the forms of channels due to runoff characteristics driven by climate changes and other alterations in basin/channel environments. Particularly, increasing local deposition in major channels is being observed nationwide. Of such phenomena, it is noteworthy that flood-plains show unidirectional growth and lowering of channels within compound channels in the form of a high-flow plain. These changes are supposed to affect management of the river ecology as well as flood control. In this study, the research on channels in Korea confirmed that the phenomenon of local deposition in those channels is actually taking place, rendering a problem to be urgently addressed. Previous studies on bed changes have been focused on low channels based on bed materials distributed over the channels. However, this research has proved that surface-layer deposition of a high-flow plain is closely related with changes in the conditions of ground surfaces and, ultimately, affects the bed of the entire channel as well. According to the intensive research on the condition of the high-flow plain of the mouth of the Han River, the silt deposited in the high-flow plain was the main cause of settlement/growth of vegetation. And this leads to landforming along with woods-forming, disturbing flood control as well as the normal river ecology.

Mineralogical, Micro-textural, and Geochemical Characteristics for the Carbonate Rocks of the Lower Makgol Formation in Seokgaejae Section (석개재 지역 하부 막골층 탄산염암의 광물조성, 미세구조 및 지화학적 특성)

  • Park, Chaewon;Kim, Ha;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.323-343
    • /
    • 2018
  • This study defines the mineralogical, micro-textural and geochemical characteristics for the carbonate rocks and discusses the fluids that have affected the depositional environment of the Lower Makgol Formation in Seokgaejae section. Based on analysis of X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-ray Spectrometry (SEM-EDS), Electron Probe Micro Analyzer-Wavelength Dispersive X-ray Spectrometry (EPMA-WDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), carbonate miorofacies in the basal and the lower members of the Makgol Formation are distinguished and classified into four types. Type 1 dolomite (xenotopic interlocking texture) and Type 2 dolomite (idiotopic interlocking texture) have relatively high Mg/Ca ratio, flat REE pattern, low Fe and Mn. Extensively interlocking textures in these dolomites indicate constant supply of Mg ion from hypersaline brine. Type 3 and Type 4 dolomite (scattered and loosely-aggregated texture) have relatively moderate Mg/Ca ratio, MREE enriched pattern, low to high Fe and Mn. These partial dolomitization indicate limited supply of Mg ion under the influx of meteoric water with seawater. Also, the evidence of Fe-bearing minerals, recrystallization and relatively high Fe and Mn in Type 4 indicates the influence of secondary diagenetic fluids under suboxic conditions. Integrating geochemical data with mineralogical and micro-textural evidence, the discrepancy between the basal and the lower members of the Makgol Formation indicates different sedimentary environment. It suggest that hypersaline brine have an influence on the basal member, while mixing meteoric water with seawater have an effect on the lower member of the Makgol Formation.

Eco-friendly remediation and reuse for coastal dredged materials using a bioaugmentation technology (생물증강법을 이용한 오염해양준설토의 환경친화적 정화 및 재활용)

  • Kim, In-Soo;Ha, Shin-Young;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.374-381
    • /
    • 2015
  • Occurrences of coastal dredged materials are ever increasing due to port construction, navigational course maintenance and dredging of polluted coastal sediments. Ocean dumping of the coastal dredged materials has become virtually prohibited as London Treaty will be enacted as of the year 2012. It will be necessary to treat and recycle the dredged materials that may carry organic pollutants and heavy metals in a reasonable and effective process: collection of the dredged materials, liquid and solid separation, and treatment of organic compounds and heavy metals. In this study we have developed a continuous bioreactor system that can treat a mixture of silt and particulate organic matter using a microbial consortium (BM-S-1). The steady-state operation conditions were: pH (7.4-7.5), temperature ($16^{\circ}C$), DO (7.5-7.9), and salt concentration (3.4-3.7%). The treatment efficiencies of SCOD, T-N and T-P of the mixture were 95-96%, 92-99%, and 79-97%. The system was also effective in removal of heavy metals such as Zn, Ni, and Cr. Levels of MLSS during three months operation period were 11,000-19,000 mg/L. Interestingly, there was little sludge generated during this period of operation. The augmented microbial consortium seemed to be quite active in the removal of the organic component (30%) present in the dredged material in association with indigenous bacteria. The dominant phyla in the treatment processes were Proteobacteria and Bacteroidetes while dominant genii were Marinobacterium, Flaviramulus, Formosa, Alteromonadaceae_uc, Flavobacteriaceae_uc. These results will contribute to a development of a successful bioremediation technology for various coastal and river sediments with a high content of organic matter, inorganic nutrients and heavy metals, leading to a successful reuse of the polluted dredged sediments.

Distribution of ATP in the Deep-Sea Sediment in the KODOS 97-2 Area, Northeast Equatorial Pacific Ocean (북동적도 태평양 KODOS 97-2 해역 심해저 퇴적물 내의 ATP 분포양상)

  • Hyun, Jung-Ho;Kim, Kyeong-Hong;Chi, Sang-Bum;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.142-148
    • /
    • 1998
  • Environmental baseline information is necessary in order to assess the potential environmental impact of future manganese-nodule mining on the deep-seabed ecosystem. Total ATP (T-ATP), dissolved ATP (D-ATP) and particulate ATP (P-ATP) were measured to estimate total microbial biomass and to elucidate their vertical distribution patterns in the seabed of KODOS (Korea Deep Ocean Study) area, northeast equatorial Pacific Ocean. Within the upper 6 cm depth of sediment, the concentrations of T-ATP, D-ATP and P-ATP ranged from 4.4 to 40.6, from 0.6 to 16.1, and from 3.0 to 29.2 ng/g dry sediment, respectively. Approximately 84% of T-ATP, 81% of D-ATP, and 74% of P-ATP were present within the topmost 2 cm depth of sediment, and the distributions of ATP were well correlated with water content in the sediment. These results indicate that the distribution of total microbial biomass was largely determined by the supply of organic matter from surface water column. Fine-scale vertical variations of ATP were detected within 1-cm thick veneer of the sediment samples collected by multiple corer, while no apparent vertical changes were observed in the box-cored samples. It is evident that the box-core samples were disturbed extensively during sampling, which suggests that the multiple corer is a more appropriate sampling gear for measuring fine-scale vertical distribution pattern of ATP within thin sediment veneer. Overall results suggest that the concentrations of ATP, given their clear changes in vertical distribution pattern within 6 cm depth of sediment, are a suitable environmental baseline parameter in evaluating the variations of benthic microbial biomass that are likely to be caused by deep-seabed mining operation.

  • PDF

Permeability Reduction of Soil Filters due to Physical Clogging (물리적 폐색으로 인한 흙필터의 투수능 저하)

  • ;;;;Reddi, L. N.
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.15-24
    • /
    • 2001
  • 흙필터는 일반적으로 침식이나 파이핑으로부터 지반 구조물을 보호하기 위하여 사용된다. 세립자들이 유동하여 필터에 퇴적하는 폐색현상이 발생하는 경우, 간극수압이 증가하고 이로 인해 지반구조물의 불안정을 유발시키게 된다. 미세입자의 유동에 의한 폐색현상은 옹벽의 뒤채움재에 설치한 필터, 흙댐의 저부에 설치된 필터, 그리고 터널의 라이닝 뒤에 설치한 필터 등에서 발생할 수 있다. 폐색현상은 필터의 투수능을 저하시켜 배수능력에 상당한 위험을 초래할 수 있다. 본 연구에서는 필터의 폐색으로 인한 투수능 저하 정도를 실험을 통해 관찰하고 이론적인 모델을 통해 정량화 시키고자 하였다. 일정한 농도의 현탁액이 필터로 유입되는 분리형 실험과 현장상태를 모사하는 흙-필터 시스템의 결합형 실험을 통해 투수능의 저하현상이 압력 제어조건과 유량 제어조건에서 관찰되었고, 서로 비교 분석되었다. 미세입자가 통과하는 필터의 간극을 모세관으로 가정한 후 모세관에서 유체의 흐름 원리를 이용하여 물리적인 폐색에 의해 발생하는 투수능 저하현상을 이론적인 모델로 구성하였다. 일반적으로 투수능은 1/10 수준으로 감소되었으며, 분리형 실험에 의한 결과와 이론적인 모델의 결과는 잘 일치하였다. 또한, 결합형 실험결과와 분리형 실험결과가 비교적 잘 일치하여 투수능 저하예측은 분리형 실험이나 이론적 모델에 의하여 가능하리라 판단되었다.

  • PDF