• 제목/요약/키워드: 미세 유체

검색결과 402건 처리시간 0.03초

강화된 자기장 구배 하에서 나노자성입자를 이용한 미세유체 기반의 면역 측정 (Microfluidic immunoassay using superparamagnetic nanoparticles in an enhanced magnetic field gradient)

  • 한영기;강주헌;김규성;박제균
    • 센서학회지
    • /
    • 제15권3호
    • /
    • pp.158-163
    • /
    • 2006
  • This paper reports a novel immunoassay method using superparamagnetic nanoparticles and an enhanced magnetic field gradient for the detection of protein in a microfluidic device. We use superparamagnetic nanoparticles as a label and fluorescent polystyrene beads as a solid support. Based on this platform, magnetic force-based microfluidic immunoassay is successfully applied to analyze the concentration of IgG as model analytes. In addition, we present ferromagnetic microstructure connected with a permanent magnet to increase magnetic flux density gradient (dB/dx, ${\sim}10^{4}$ T/m), which makes limit of detection reduced. The detection limit is reduced to about 1 pg/mL.

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제2보 - 딤플 위치의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 2 - Effect of Dimple Location)

  • 박태조;황윤건
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2010
  • In the last decade, laser surface texturing (LST) has emerged as a viable option of surface engineering. Many problems related with mechanical components such as thrust bearings, mechanical face seals and piston rings, etc, LST result in significant improvement in load capacity, wear resistance and reduction in friction force. It is mainly experimentally reported the micro-dimpled bearing surfaces can reduce friction force, however, precise theoretical results are not presented until now. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is used to investigate the lubrication characteristics of a parallel thrust bearing having 3-dimensional micro-dimple. The results show that the pressure, velocity and density distributions are highly affected by the location and number of dimple. The numerical method and results can be use in design of optimum dimple characteristics, and further researches are required.

다양한 형상의 마이크로 채널 내 밀도 차를 가진 다상 층류 유동의 특성에 대한 매개변수 연구 (Parametric Study on the Characteristics of Multiphase Laminar Flow with Density Difference in Various Microchannels)

  • 백승호;김동성;최영기
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.783-788
    • /
    • 2009
  • In this paper, we have performed a parametric study on the characteristics of multiphase laminar flow with density difference in various microchannels. The interface between multiphase fluids is rotated by the gravitational forces induced by density difference. The numerical simulations were carried out via commercial CFD package to study the characteristics of multiphase laminar flow. The results of the numerical simulations in this study were verified by comparing with the previously reported experimental results in the literature. We have also proposed a new dimensionless relationship between dimensionless rotation angle of interface and dimensionless parameters are proposed for square microchannels with various aspect ratios. The dimensionless relationship could be widely applied to the reliable design of various microfluidic devices dealing with multiphase laminar flow.

자성 유체를 이용한 미세연마가공의 원리 (The Principle of Magnetorheological finishing for a micro part)

  • 김동우;신영재;이응숙;조명우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1840-1843
    • /
    • 2003
  • The Magnetorheological fluid has the properties that its viscosity has drastic changed under some magnetic fields therefore, Magnetorheological fluids has been used for micro polishing of the micro part( for example, a aspherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorheological finishing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fluid ate brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate for glass polishing lends support the validity of the approach.

  • PDF

유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구 (Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow)

  • 윤익로;신승원
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.469-476
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.

전기 영동을 이용한 공기 중 미생물 분리 (Dielectrophoretic separator for Airborne Microbes)

  • 문희성;남윤우;박재찬;정효일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1683-1684
    • /
    • 2008
  • For direct detection of microbes in air, samples have to be collected but environmental particles such as dust are also trapped in such samples. Therefore the isolation of target bacteria from non-biological materials of similar size is of great importance in the identification of such organisms. Dielectrophoresis is an emerging technique that can rapidly separate cells in microfluidics. In this paper we proposed a new method for the separation of airborne microbes using condensation and dielectrophoresis. This system could be used as a continuous flow through separation system for various particles and utilized as a pretreatment technique for microbe detection.

  • PDF

점도 차이를 이용한 간단하고 효율적인 액적의 병합 방법 (Simple and Highly Efficient Droplet Merging Method using Viscosity Difference)

  • 진병주;김영원;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1752-1757
    • /
    • 2008
  • Simple and highly efficient droplet merging method is proposed, which enables two nanoliter or picoliter droplets to merge regularly in a straight microchannel. We observe that two droplets of the same size but of different viscosities are merged by velocity difference induced as they are transported with the carrier fluid. To make viscosity difference, the mass ratio of water and glycerol is varied. Two droplets of the same size or of different sizes are generated alternatingly in the cross channel by controlling flowrates. This droplet merging method can be used to mix or encapsulate one target sample with another material, so that it can be applied to cell lysis, particle synthesis, drug discovery, hydrogel-bead production, and so on.

  • PDF

플라즈마 펄싱을 이용한 건식 식각 공정의 수치 모델링

  • 주정훈;김남헌
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.216.2-216.2
    • /
    • 2014
  • 플라즈마의 연속 운전 조건은 플라즈마 발생원의 기하적, 전기적 특성에 의한 공정 특성을 갖는다. RF power를 pulsing하는 경우 off시간에 하전 입자와 중성 라디칼의 소멸 특성의 차이로 인하여 나노 미세 구조의 식각에 유리한 측면이 있다. 유도 결합 플라즈마원을 주발생원으로 이용하는 건식 식각장비의 기판 바이어스를 rf pulsing하는 경우 유체 모델을 이용한 계산 방법에서 rf off 시간 중의 2차 전자 발생 계수를 rf on time시와 동일 하게 계산하거나 입사 이온의 에너지와 무관하게 0.05 등의 상수로 처리하는 경우가 많은데 본 연구에서는 rf bias off 시간 동안의 SEC(secondary electron coefficient)를 변화시키는 조건이 플라즈마의 특성에 어떤 영향을 미치는지 CFD-ACE+에 user subroutine을 이용하여 조사하였다.

  • PDF

고주파 유도경화처리한 중탄소강의 회전접촉 피로거동에 미치는 탄소함량의 영향 (Influence of Carbon Content on Rolling Contact Fatigue of High Frequency Induction-Hardened Medium Carbon Steels)

  • 최병영;이동민
    • 한국재료학회지
    • /
    • 제7권9호
    • /
    • pp.744-749
    • /
    • 1997
  • 본 연구에서는 고주파 유도경화처리한 중탄소강의 회전접촉 피로거동을 0.44wt.%C강과 0.55wt.%C강을 사용하여 조사하였다. 회전접촉 피로시험은 Polymet RCF-1 시험기에서 탄성유체 윤활 조건으로 회전속도 8,000rpm, 최대 Hertz응력 492kg/m$m^2$을 가하면서 실시하였다. 미세한 lath마르텐사이트가 고주파 유도경화한 0.44wt.%C강과 0.55wt.%C강의 표면경화층에 형성되었고 소량의 페라이트가 일부 형성되었으며 0.44wt.%C강과 0.55wt.%C에 비해 비교적 큰 페라이트가 나타났다. 회전접촉 피로시험 후 표면경도가 거의 유지되는 표면경화층에서 회전접촉 피로시험전에 비해 경도가 상승하였다. 이 경도증가량의 최대치($\Delta$ Hv$_{max}$)와 피로수명과의 관계를 조사한 결과 0.55wt.%C강이 0.44wt.%C강에 비해 회전접촉 피로중에 일어나는 소변형에 대한 높은 저항성에 주로 기인하여 $\Delta$ Hv$_{max}$값은 낮게 나타나고 피로수명은 높게 나타났다.

  • PDF

전기 삼투를 이용한 미세 유체 소자에서의 유량 제어 기술 개발 (Development of electroosmotic flow control technique in micro fluidic devices)

  • 최은수;정대중;심원철;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1991-1993
    • /
    • 2002
  • This paper presents the PDMS surface characteristic change after the plasma process and the electroosmotic flow control technique for the two-dimensional focusing in the micro channels made of PDMS and glass. The channels are fabricated by plastic molding and micromachining technique. To observe the surface characteristic change as time elapses, we measure the contact angle of water on the surface and the velocity of the electroosmotic flow in a channel. The electric field adequate for focusing of a core flow in a confluence channel is obtained by the experiment. The computer simulation is performed to obtain the width and the depth of the core flow for several junction angles of the confluence channel.

  • PDF