• Title/Summary/Keyword: 미세 유체

Search Result 401, Processing Time 0.027 seconds

Generation of Fine Droplets in a Simple Microchannel (유체 소자를 이용한 미세 액적 생성)

  • Kim, Su-Dong;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2658-2663
    • /
    • 2008
  • In the present study, we designed a microfluidic flatform that generates monodisperse droplets with diameters ranging from hundreds of nanometers to several micrometers. To generate fine droplets, T-junction and flow-focusing geometry are integrated into the microfluidic channel. Relatively large aqueous droplets are generated at the upstream T-junction and transported toward the flow-focusing geometry, where each droplet is broken up into the targeted size by the action of viscous stresses. Because the droplet prior to rupture blocks the straight channel that leads to the flow-focusing geometry, it moves very slowly by the pressure difference applied between the advancing and receding regions of the moving droplet. This configuration enables very low flow rate of inner fluid and higher flow rate ratio between inner and outer fluids at the flow-focusing region. It is shown that the present microfluidic device can generate droplets with diameters about 1 micrometer size and standard deviation less than 3%.

  • PDF

탕구형상이 박육 전자기부품의 유동거동에 미치는 영향

  • Lee, Byeong-Deok;Kim, Eun-Jeong;Han, Jeong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.43.1-43.1
    • /
    • 2009
  • 다이캐스팅과 같이 가압 사출방식을 이용한 제품 성형 공정에서 관심의 대상이 되어왔던 연구 주제 중 하나는 어떻게 하면 금형 내에 충진되는 용탕의 유동을 층류성으로 제어할 수 있을까 하는 문제이다. 그러나 다이캐스팅 공정에서 일반적인 용탕의 사출속도로는 그 유동 특성을 제어하기가 거의 불가능하다. 이러한 사출속도의 설정 및 게이트의 형상설계를 하는데 있어서 대부분 경험적인 자료를 이용하고 있어 공정의 효율성을 극대화하고 있지 못한 실정이다. 본 연구에서는 용융 마그네슘합금이 금형내에 충진 될 때 유체의 유입속도 및 탕구형상이 유동에 미치는 영향을 전산유체역학을 이용하여 충진 및 응고해석을 하였고, 예견되는 제품의 결함 및 결함제어 가능성을 진단함으로써 개선방안을 제안하고 최종적으로 금형설계 제작에 반영하여 실제 주조된 제품을 해석결과와 비교하였다. 또한, 본 연구에서 주조된 전자기부품의 미세조직을 관찰하고, 인장강도 및 파괴 특성을 관찰 하였다. 실험결과 빠른 응고속도에 따른 조직의 미세화 효과로 항복강도, 인장강도 그리고 경도 특성이 우수하게 관찰되었다.

  • PDF

Analysis and Design of Ultrasonic Micromixer (초음파 미세혼합기의 해석 및 설계)

  • Kim, Duck-Jong;Heo, Pil-Woo;Park, Sang-Jin;Kim, Jae-Yun;Yoon, Eui-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.101-106
    • /
    • 2003
  • In this work, mixing phenomena in the mixing chamber of a ultrasonic micromixer are analyzed through an analytical approach. A simplified 2-dimensional model for the ultrasonic micromixer is presented. Analytical solutions for fluid flow induced by ultrasonic waves are obtained through successive approximations method. From simulation results on thermal diffusion in the mixing chamber, effects of relative location, size, and vibration frequency of a piezoelectric material and aspect ratio of the mixing chamber on mixing performance of the ultrasonic micromixer are investigated. Finally, design guidelines for the ultrasonic micromixer are suggested based on the parametric study.

  • PDF

Numerical Analysis of the Filling Stage in Insert Injection Molding of Microfluidic Chip with Metal Electrodes (금속 전극을 포함한 미세유체 칩의 인서트 사출성형 충전 공정 해석)

  • Lee, Bong-Kee;Na, Seung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.969-976
    • /
    • 2015
  • In the present study, a numerical investigation of an insert injection molding process was carried out for the development of thermoplastic microfluidic chip plates with metal electrodes. Insert injection molding technology enables efficient realization of a plastic-metal hybrid structure and various efforts have been undertaken to produce novel components in several application fields. The microfluidic chip with metal inserts was proposed as a representative example and its molding process was analyzed. The important characteristics of the filling stage, such as the effects of filling time and thickness of the part cavity, were characterized. Furthermore, the detailed distributions of pressure and temperature at the end of the filling stage were investigated, revealing the significance of metal insert temperature.

3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control (원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어)

  • Kang, Dong Hee;Kim, Na Kyong;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.

Self-healing capsule manufacturing and characteristic analysis using microfluidic control method droplet manufacturing technology (미세 유체제어 방식 드랍렛 제작 기술을 이용한 자가치유 캡슐 제작 및 특성 분석)

  • Ji, Dong-min;Song, Won-Il;lee, ja sung;Ramos-Sebastian, Armando;Kim, S-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.251-252
    • /
    • 2022
  • The microfluidic controlled droplet manufacturing system is one of the most powerful methods for capsule manufacturing. The microfluidic control method can control the type and size of the capsule by changing the size and configuration of the channel. In addition, by increasing the number of channels, capsules of uniform size can be mass-produced. In this paper, a capsule manufacturing system including flow-focusing and T junction method was designed. In addition, the effectiveness of this system was verified by manufacturing multi-emulsion capsules with a size of 2.2 to 3 mm.

  • PDF

Fabrication of Nano-filter Device for High Efficient Separation and Concentration of Biomolecules (고효율 바이오물질 분리 및 농축을 위한 나노필터소자제작)

  • Huh, Yun Suk;Choi, Bong Gill;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.738-742
    • /
    • 2012
  • Here, we develop a new nanofilter device for the rapid and efficient separation of nanoparticles and biomolecules, exploiting the use of AAO mebrane with ordered nanopores in the range from 20 nm to 200 nm. Briefly, the chip comprises of a series of the upper and lower PDMS channels containing embedded inlet and outlet ports, and $50{\mu}m$ width microfluidic channel, and AAO membrane to be made the filtering zone. After assembling these components, the acrylate plastic plates were used to fix the device on the top and bottom side. When introducing the samples into the inlet ports of the upper PDMS channel, we were able to separate and concentrate the nanoparticles and target molecules at the filtering zone, and to elute the solutions containing the unwanted materials toward the lower PDMS channels normal to the direction of AAO membrane. To demonstrate the usefulness of the device we apply it to the SERS detection of nucleic acid sequences associated with Dengue virus serotype 2. We report a limit of detection for Dengue sequences of 300 nM and show excellent enhancement of Raman signals from the filter zone of the nanofilter device.