• Title/Summary/Keyword: 미세제조

Search Result 2,467, Processing Time 0.033 seconds

Non-Destructive Evaluation of Microstructure of SiC/AC8A Composite Material by Ultrasonic Measurement (초음파를 이용한 비파괴방법에 의한 SiC/AC8A금속 복합재료의 미시조직 평가)

  • Park, Y.C.;Yun, D.P.;Lee, G.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.4
    • /
    • pp.225-233
    • /
    • 1997
  • This study is performed to establish a non-destructive evaluation method for metal matrix composite using ultrasonic technique. The specimen is made of SiC/AC8A metal matrix composite by squeeze-casting method. Three kinds or reinforced particles are prepared as 4.86, 8.09 and $11.44{\mu}m$ to investigate the effect of size on the mechanical and ultrasonic properties of metal matrix composite. In addition, four different volume fractions (14, 22.5, 27.5, 35%) of reinforced particles are prepared per each size to examine the effect of volume fraction on the ultrasonic properties. From this specimen, the availability and precision of measurement of Young's modulus are examined and the evaluation method for microstructure of metar matrix composite using the speed of sound and attenuation factor is also reviewed. The results show that the Young's modulus measured by ultrasonic method is as effective as that measured by mechanical method. It is also known that the size and volume fraction of reinforced fiber are precisely evaluated using the speed of sound and attenuation factor.

  • PDF

Multimode fiber-optic pressure sensor based on dielectric diaphragm (유전체 다이아프램을 이용한 다모드 광섬유 압력센서)

  • 김명규;권대혁;김진섭;박재희;이정희;손병기
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.220-226
    • /
    • 1997
  • An optical intensity-type pressure sensor has been fabricated by coupling multimode optical fiber with 100 nm-Au/30 nm-NiCr/150 nm-$Si_3N_4/300 nm-SiO_2/150 nm-Si_3N_4$ optical reflection layer supported by micromachined frame-shape silicon substrate, and its characteristics was investigated. For the application of $Si_3N_4/SiO_2/Si_3N_4$ diaphragm to the optical reflection layer of the sensor, NiCr and Au films were deposited on the backside of the diaphragm by thermal evaporation , respectively, and thus optical low caused by transmission in the reflection layer could be decreased to a few percents. Dielectric diaphragms with uniform thickness were able to be also reproduced because top- and bottom-$Si_3N_4$ layer of the diaphragm could automatically stop silicon anisotropic etching. The respective pressure ranges in which the sensor showed linear optical output power-pressure characteristics were 0~126.64 kPa, 0~79. 98 kPa, and 0~46.66 kPa, and the respective pressure sensitivities of the sensor were about 20.69 nW/kPa, 26.70 nW/kPa, and 39.33 nW/kPa, for the diaphragm sizes of 3$\times$3 $\textrm{mm}^2$, 4$\times$4 $\textrm{mm}^2$, and 5$\times$5 $\textrm{mm}^2$, indicating that the sensitivity increases as diaphragm size increases.

  • PDF

Quality and Storage Characteristics of Mechanically Deboned Chicken Meat Added Chicken Sausage (기계발골 계육이 첨가된 계육 소시지의 품질 및 저장특성)

  • Lee, Jae-Joon;Choi, Jung-Soek;Jung, Dong-Soon;Park, Sung-Hyun;Choi, Yang-Il
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.460-468
    • /
    • 2011
  • We evaluated the effect of adding mechanically deboned chicken meat (MDCM) (0, 10, 20, 30 or 50%) on quality characteristics of chicken sausage. Adding MDCM decreased the protein content of chicken sausage, but ash content increased significantly. Adding MDCM had no effect on pH and water holding capacity of sausage. Adding MDCM increased cooking loss, but did not affect the shear force value of the sausage. Adding MDCM decreased the L- (lightness) and b- (yellowness) values but increased the a- (redness) value of sausage. Adding MDCM decreased the hardness and cohesiveness values, but did not affect the springiness value of chicken sausage. Adding MDCM decreased the juiciness and hardness but increased the flavor and chewiness scores of chicken sausage. Regardless of the MDCM addition level, all chicken sausage contained low residual nitrite ion (<4 ppm). During the 10 d of storage at $4^{\circ}C$, adding MDCM did not affect total microbial count or TBA values of chicken sausage, but the VBN value of the sausage increased slightly. However, all storage characteristic values in the sausage were within the safety range. Adding MDCM (0, 10 or 20%) to chicken sausage resulted in a finely structured protein matrix under scanning electron microscopy (SEM), which indicated a good meat emulsion, but adding MDCM at more than 20% resulted in a very coarse protein matrix structure.

The control of liquid phase behavior during sintering of Clay/EAF dust bodies (Clay/EAF dust계 시편의 소결과정 중 액상거동 제어)

  • Kim, Kwang-Soo;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.68-74
    • /
    • 2005
  • The electrical arc furnace (EAF) classified as a special waste contains many flux components producing melts during a sintering process, so it decreases the sintering temperature and improves the mechanical properties of specimens. Increasing dust content in a clay-dust system brick, however, may cause the fraction defective higher due to the excessive liquid produced. To control the liquid behavior produced during sintering process for the clay-dust system specimens, the $Al_2O_3$ was added and the physical properties were analyzed. The microstructure for the clay-dust system body sintered with $Al_2O_3$ became homogeneous and the overall size of pores decreased. Adding $Al_2O_3$ to clay-dust system body increased the mechanical properties and the temperature of maximum strength increased as much as $50^{\circ}C$, and the apparent density increased and the absorption decreased. The mullite ($3Al_2O_3{\cdot}2SiO_2$) was produced during sintering process by reaction of $Al_2O_3$ and $SiO_2$ which could participate to liquid-producing-process and the viscosity of melts increased which was proved by measuring a critical viscosity temperature (Tcv) therefore, the refractoriness of specimens were improved to lower the fraction defective.

Microstructure and Electrical Properties of the Pt/Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS) Using the PbO Buffer Layer (PbO 완충층을 이용한 Pt/Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS)의 미세구조와 전기적 특성)

  • Park, Chul-Ho;Song, Kyoung-Hwan;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.104-109
    • /
    • 2005
  • To study the role of PbO as the buffer layer, Pt/PZT/PbO/Si with the MFIS structure was deposited on the p-type (100) Si substrate by the r.f. magnetron sputtering with $Pb_{1.1}Zr_{0.53}Ti_{0.47}O_3$ and PbO targets. When PbO buffer layer was inserted between the PZT thin film and the Si substrate, the crystallization of the PZT thin films was considerably improved and the processing temperature was lowered. From the result of an X-ray Photoelectron Spectroscopy (XPS) depth profile result, we could confirm that the substrate temperature for the layer of PbO affects the chemical states of the interface between the PbO buffer layer and the Si substrate, which results in the inter-diffusion of Pb. The MFIS with the PbO buffer layer show the improved electric properties including the high memory window and low leakage current density. In particular, the maximum value of the memory window is 2.0V under the applied voltage of 9V for the Pt/PZT(200 nm, $400^{\circ}C)/PbO(80 nm)/Si$ structures with the PbO buffer layer deposited at the substrate temperature of $300^{\circ}C$.

Effect of Tetragonal $ZrO_2$ Addition on the Mechanical Properties of $\alpha$-Alumina/La-\beta-Aluminate $Composite (정방정 $ZrO_2$의 첨가가 $\alpha$-Alumina/La-\beta-Aluminate $ 복합체의 기계적 성질에 미치는 영향)

  • Suk-Won Kang;Hai-Doo Kim;Shin Kim;Soo-Young Lee;Dong-Soo Park
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.513-519
    • /
    • 1994
  • Alumina composite was fabricated by introducing tetragonal ZrO2 in alumina composite of $\alpha$-alumina reinforced with in-situ formed La-$\beta$-aluminate (LaAl11O18). The powder mixture of composition (100-x)[88 Al2O3+(La2O3+11 Al2O3)]+x vol% ZrO2 was prepared with x from 0 to 40. Dense composites fabricated by hot-pressing exhibited bending strength up to 1200 MPa. The gain growth inhibiting effect of ZrO2 grains and La-$\beta$-aluminate platelets, and possibly the stress-induced phase transformation of ZrO2 have resulted in the high bending strength. The fracture toughness of the composite also increased up to 8.5 MPa.m1/2. The enhancement in toughness can be explained by transformation and microcrack toughening of ZrO2 and by crack deflection and bridging of La-$\beta$-aluminate platelets and ZrO2.

  • PDF

Physical Properties of Sintered Body for Coal Fly Ash-clay Slip of Varying Dispersion State (석탄회-점토계 슬립의 분산상태에 따른 소결체의 물리적 특성)

  • 강승구;이기강;김유택;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.677-682
    • /
    • 2003
  • The physical properties of sintered body made from 3 kinds of slip, F (Flocculated), M (Moderate), and D (Dispersed) for coal fly ash 70-clay 30 (wt%) were studied in terms of slip states and pore size distribution of sintered bodies. The floc particle size distribution for slip F was wider than slip D and the slip F contained flocs larger than 11 $\mu\textrm{m}$. The pore size distribution of the green body of all slips ranged over 1∼4 $\mu\textrm{m}$. The pores smaller than 1 $\mu\textrm{m}$ almost disappeared during the sintering process, while the larger pore of 2.5∼3 $\mu\textrm{m}$ growed by 1 $\mu\textrm{m}$. The pore distribution for the green body of slip F became a narrow in width and high in height after sintering and the large pore limit in a slip F sintered body was 5.1 $\mu\textrm{m}$ which is smaller than that of other slip. The slip F rather flocculated was favorable over slip D well dispersed, in offering a higher compressive strength. From these results, the mechanical strength of sintered body is dependent on the pore distribution which could be controlled by dispersion state of the slips.

Preparation and Characteristics of $Y_2O_3-CeO_2-ZrO_2$ Structural Ceramics : II. Mechanical Properties and Thermal Stability of Sintered Body ($Y_2O_3-CeO_2-ZrO_2$ 구조세라믹스의 제조 및 특성 : II. 소결체의 기계적 성질 및 열적 안정성)

  • 오혁상;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.102-108
    • /
    • 1997
  • ZrO2 powders stabilized with Y2O3 and CeO2 of various compositions were prepared by the coprecipitation of water-soluble ZrOCl2.8H2O, YCl3.6H2O and Ce(NO3)3.6H2O, and their compacts were pressurelessly sintered at 1400 and 150$0^{\circ}C$ for 2hrs in air. 2mol% Y2O3-ZrO3 showed the most superior strength (1003MPa) and microhardness (12.6GPa), while 10 mol%CeO2-ZrO2 had the hightest toughness (13.3 MPa.m1/2) after sintering at 140$0^{\circ}C$. The addition of Y2O3 into Y2O3-ZrO3 decreased mean grain size and increased strength and hardness but decrease toughness. On the other hand, the addition of CeO2 into Y2O3-ZrO2 enhanced the stability of tetragonal phase during low-temperature aging for a long time under hydrothermal atmosphere.

  • PDF

Improved Electrical Properties by In Situ Nitrogen Incorporation during Atomic Layer Deposition of HfO2 on Ge Substrate (Ge 기판 위에 HfO2 게이트 산화물의 원자층 증착 중 In Situ 질소 혼입에 의한 전기적 특성 변화)

  • Kim, Woo-Hee;Kim, Bum-Soo;Kim, Hyung-Jun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Ge is one of the attractive channel materials for the next generation high speed metal oxide semiconductor field effect transistors (MOSFETs) due to its higher carrier mobility than Si. But the absence of a chemically stable thermal oxide has been the main obstacle hindering the use of Ge channels in MOS devices. Especially, the fabrication of gate oxide on Ge with high quality interface is essential requirement. In this study, $HfO_xN_y$ thin films were prepared by plasma-enhanced atomic layer deposition on Ge substrate. The nitrogen was incorporated in situ during PE-ALD by using the mixture of nitrogen and oxygen plasma as a reactant. The effects of nitrogen to oxygen gas ratio were studied focusing on the improvements on the electrical and interface properties. When the nitrogen to oxygen gas flow ratio was 1, we obtained good quality with 10% EOT reduction. Additional analysis techniques including X-ray photoemission spectroscopy and high resolution transmission electron microscopy were used for chemical and microstructural analysis.

하이브리드 SEM 시스템

  • Kim, Yong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.109-110
    • /
    • 2014
  • 주사전자현미경(Scanning Electron Microscopy: SEM)은 고체상태에서 미세조직과 형상을 관찰하는 데에 가장 다양하게 쓰이는 분석기기로서 최근에 판매되고 있는 고분해능 SEM은 수 나노미터의 분해능을 가지고 있다. 그리고 SEM의 초점심도가 크기 때문에 3차원적인 영상의 관찰이 용이해서 곡면 혹은 울퉁불퉁한 표면의 영상을 육안으로 관찰하는 것처럼 보여준다. 활용도도 매우 다양해서 금속파면, 광물과 화석, 반도체 소자와 회로망의 품질검사, 고분자 및 유기물, 생체시료 nnnnnnnnn와 유가공 제품 등 모든 산업영역에 걸쳐 있다(Fig. 1). 입사된 전자빔이 시료의 원자와 탄성, 비탄성 충돌을 할 때 2차 전자(secondary electron)외에 후방산란전자(back scattered electron), X선, 음극형광 등이 발생하게 되는 이것을 통하여 topography (시료의 표면 형상), morphology(시료의 구성입자의 형상), composition(시료의 구성원소), crystallography (시료의 원자배열상태)등의 정보를 얻을 수 있다. SEM은 2차 전자를 이용하여 시료의 표면형상을 측정하고 그 외에는 SEM을 플랫폼으로 하여 EDS (Energy Dispersive X-ray Spectroscopy), WDS (Wave Dispersive X-ray Spectroscope), EPMA (Electron Probe X-ray Micro Analyzer), FIB (Focus Ion Beam), EBIC (Electron Beam Induced Current), EBSD (Electron Backscatter Diffraction), PBMS (Particle Beam Mass Spectrometer) 등의 많은 분석장치들이 SEM에 부가적으로 장착되어 다양한 시료의 측정이 이루어진다. 이 중 결정구조, 조성분석을 쉽고 효과적으로 할 수 있게 하는 X선 분석장치인 EDS를 SEM에 일체화시킨 장비와 EDS 및 PBMS를 SEM에 장착하여 반도체 공정 중 발생하는 나노입자의 형상, 성분, 크기분포를 측정하는 PCDS(Particle Characteristic Diagnosis System)에 대해 소개하고자 한다. - EDS와 통합된 SEM 시스템 기본적으로 SEM과 EDS는 상호보완적인 기능을 통하여 매우 밀접하게 사용되고 있으나 제조사와 기술적 근간의 차이로 인해 전혀 다른 방식으로 운영되고 있다. 일반적으로 SEM과 EDS는 별개의 시스템으로 스캔회로와 이미지 프로세싱 회로가 개별적으로 구현되어 있지만 로렌츠힘에 의해 발생하는 전자빔의 왜곡을 보정을 위해 EDS 시스템은 SEM 시스템과 연동되어 운영될 수 밖에 없다. 따라서, 각각의 시스템에서는 필요하지만 전체 시스템에서 보면 중복된 기능을 가지는 전자회로들이 존재하게 되고 이로 인해 SEM과 EDS에서 보는 시료의 이미지의 차이로 인한 측정오차가 발생한다(Fig. 2). EDS와 통합된 SEM 시스템은 중복된 기능인 스캔을 담당하는 scanning generation circuit과 이미지 프로세싱을 담당하는 FPGA circuit 및 응용프로그램을 SEM의 회로와 프로그램을 사용하게 함으로 SEM과 EDS가 보는 시료의 이미지가 정확히 일치함으로 이미지 캘리브레이션이 필요없고 측정오차가 제거된 EDS 측정이 가능하다. - PCDS 공정 중 발생하는 입자는 반도체 생산 수율에 가장 큰 영향을 끼치는 원인으로 파악되고 있으며, 생산수율을 저하시키는 원인 중 70% 가량이 이와 관련된 것으로 알려져 있다. 현재 반도체 공정 중이나 반도체 공정 장비에서 발생하는 입자는 제어가 되고 있지 않은 실정이며 대부분의 반도체 공정은 저압환경에서 이루어지기에 이 때 발생하는 입자를 제어하기 위해서는 저압환경에서 측정할 수 있는 측정시스템이 필요하다. 최근 국내에서는 CVD (Chemical Vapor Deposition) 시스템 내 파이프내벽에서의 오염입자 침착은 심각한 문제점으로 인식되고 있다(Fig. 3). PCDS (Particle Characteristic Diagnosis System)는 오염입자의 형상을 측정할 수 있는 SEM, 오염입자의 성분을 측정할 수 있는 EDS, 저압환경에서 기체에 포함된 입자를 빔 형태로 집속, 가속, 포화상태에 이르게 대전시켜 오염입자의 크기분포를 측정할 수 있는 PBMS가 일체화 되어 반도체 공정 중 발생하는 나노입자 대해 실시간으로 대처와 조치가 가능하게 한다.

  • PDF