DOI QR코드

DOI QR Code

Improved Electrical Properties by In Situ Nitrogen Incorporation during Atomic Layer Deposition of HfO2 on Ge Substrate

Ge 기판 위에 HfO2 게이트 산화물의 원자층 증착 중 In Situ 질소 혼입에 의한 전기적 특성 변화

  • Kim, Woo-Hee (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Bum-Soo (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Hyung-Jun (School of Electrical and Electronic Engineering, Yonsei University)
  • 김우희 (연세대학교 전기전자공학부) ;
  • 김범수 (연세대학교 전기전자공학부) ;
  • 김형준 (연세대학교 전기전자공학부)
  • Published : 2010.01.30

Abstract

Ge is one of the attractive channel materials for the next generation high speed metal oxide semiconductor field effect transistors (MOSFETs) due to its higher carrier mobility than Si. But the absence of a chemically stable thermal oxide has been the main obstacle hindering the use of Ge channels in MOS devices. Especially, the fabrication of gate oxide on Ge with high quality interface is essential requirement. In this study, $HfO_xN_y$ thin films were prepared by plasma-enhanced atomic layer deposition on Ge substrate. The nitrogen was incorporated in situ during PE-ALD by using the mixture of nitrogen and oxygen plasma as a reactant. The effects of nitrogen to oxygen gas ratio were studied focusing on the improvements on the electrical and interface properties. When the nitrogen to oxygen gas flow ratio was 1, we obtained good quality with 10% EOT reduction. Additional analysis techniques including X-ray photoemission spectroscopy and high resolution transmission electron microscopy were used for chemical and microstructural analysis.

Ge은 Si에 비하여 높은 이동도를 갖기 때문에 차세대 고속 metal oxide semiconductor field effect transistors (MOSFETs) 소자를 위한 channel 물질로서 각광받고 있다. 그러나 화학적으로 안정한 게이트 산화막의 부재는 MOS 소자에 Ge channel의 사용에 주요한 장애가 되어왔다. 특히, Ge 기판 위에 고품질의 계면 특성을 갖는 게이트 절연막의 제조는 필수 요구사항이다. 본 연구에서, $HfO_xN_y$ 박막은 Ge 기판 위에 플라즈마 원자층 증착법(plasma-enhanced atomic layer deposition, PEALD)을 이용하여 증착되었다. 플라즈마 원자층 증착공정 동안에 질소는 질소, 산소 혼합 플라즈마를 이용한 in situ 질화법에 의하여 첨가되었다. 산소 플라즈마에 대한 질소 플라즈마의 첨가로 성분비를 조절함으로써 전기적 특성과 계면 성질을 향상시키는데 초점을 맞추어서 연구를 진행하였다. 질소 산소의 비가 1:1이었을 때, EOT의 값의 10% 감소를 갖는 고품질의 소자특성을 보여주었다. X-ray photoemission spectroscopy (XPS)와 high resolution transmission electron microscopy (HR-TEM)를 사용하여 박막의 화학적 결합 구조와 미세구조를 분석하였다.

Keywords

References

  1. 김대희, 서화일, 김영철, 한국진공학회 18, 9 (2009).
  2. 조영제, 이지면, 곽준섭, 한국진공학회 18, 30 (2009).
  3. S. C. Song, H. F Luan, Y. Y. Chen, M. Gardner, J. Fulford, M. Allen, and D. L. Kwong, Electron Devices Meeting, 1998. IEDM Technical Digest, 373 (1998).
  4. H. Kim, D. C Gilmer, S. A. Campbell, and D. L. Polla, Appl. Phys. Lett. 69, 3860 (1996). https://doi.org/10.1063/1.117129
  5. B. H. Lee, Y. J. Jeon, K. Zawadzki, W.-J Qi, and J. C. Lee, Appl. Phys. Lett. 74, 3143 (1999). https://doi.org/10.1063/1.124089
  6. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, Materials Science and Engineering R22, 269 (1998).
  7. S. B. Chen, C. H. Lai, and A. Chin, IEEE Electr. Device L. 23, 185 (2002). https://doi.org/10.1109/55.992833
  8. G. Bersuker, P. Zeitzoff, G. Brown, and H. R. Huff, Mater. Today 7, 26 (2004).
  9. C. O. Chui, H. Kim, D. Chi, P. C. Mcintyre, and K. C. Saraswat. IEEE Transactions on Electron Devices. 53, 1509 (2006). https://doi.org/10.1109/TED.2006.875812
  10. K. J. Hubbard and D. G. Schlom, Materials Research Society Bulletin. 27, 198 (2002). https://doi.org/10.1557/mrs2002.71
  11. D.A. Buchanan, E.P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M.A. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel, S. Guha, N. Bojarczuk, A. Callegari, C. D'Emic, P. Kozlowski, K. Chan, R.J. Fleming, P.C. Jamison, J. Brown, and R. Arndt, "80 nm poly-silicon gated n-FETs with ultra-thin Al2O3 gate dielectric for ULSI applications", Electron Devices Meeting, 2000. IEDM Technical Digest, 223 (2000).
  12. S. M. Sze and J. C. Irvin, Solid State Electron. 11, 599 (1968). https://doi.org/10.1016/0038-1101(68)90012-9
  13. R. Garg, D. Misra, and S. Guha, IEEE Transaction on Device and Materials Reliability 6, 455 (2006). https://doi.org/10.1109/TDMR.2006.881457
  14. N. Umezawa, K. Shiraishi, K. Torii, M. Boero, T. Chikyow, H. Watanabe, K. Yamabe, T. Ohno, K. Yamada, and Y. Nara, IEEE Electr. Device L. 28, 363 (2007). https://doi.org/10.1109/LED.2007.894655
  15. T. Sugawara, Y. Oshima, R. Sreenivasan, and P. C. Mclntyre, Appl. Phys. Lett. 90, 112912 (2007). https://doi.org/10.1063/1.2472197
  16. M. Houssa, T. Conard, F. Bellenger, G. Mavrou, Y. Panayiotatos, A. Sotiropoulos, A. Dimoulas, M. Meuris, M. Caymax, and M. M. Heyns, J. Electrochem. Soc. 153, G1112 (2006). https://doi.org/10.1149/1.2357714
  17. W. J. Maeng and H. Kim, Appl. Phys. Lett. 91, 092901 (2007). https://doi.org/10.1063/1.2776350
  18. T. Deegan and G. Hughes, Appl. Surf. Sci. 123/124, 66 (1998). https://doi.org/10.1016/S0169-4332(97)00511-4
  19. C.-C. Cheng, C.-H. Chien, C.-W. Chen, S.-L. Hsu, C.-H. Yang, and C.-Y. Chang, J. Electrochem. Soc. 153, F160 (2006). https://doi.org/10.1149/1.2203097
  20. H. Kim, C. O. Chui, K. C. Saraswat, and P.C. McIntyre, Appl. Phys. Lett. 83, 2647 (2003) https://doi.org/10.1063/1.1613031
  21. N. Haraki, S. Nakano, S. Ono, and S. Teii, Electr. Eng. Japan. 149, 14 (2004). https://doi.org/10.1002/eej.20018
  22. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, and J.A. Yarmoff, Phys. Rev. B. 38, 6084 (1988). https://doi.org/10.1103/PhysRevB.38.6084
  23. I. Takahashi, H. Sakurai, A. Yamada, K. Funaiwa, K. Hirai, S. Urabe, T. Goto, M. Hirayama, A. Teramoto, S. Sugawa, and T. Ohmi, Appl. Surf. Sci. 216, 239 (2003). https://doi.org/10.1016/S0169-4332(03)00424-0

Cited by

  1. Atomic Layer Deposition of HfO2Films on Ge vol.23, pp.1, 2014, https://doi.org/10.5757/ASCT.2014.23.1.40