• Title/Summary/Keyword: 미세복제기술

Search Result 15, Processing Time 0.023 seconds

Replication of Hybrid Micropatterns Using Selective Ultrasonic Imprinting (선택적 초음파 임프린팅을 사용한 복합 미세패턴의 복제기술)

  • Lee, Hyun Joong;Jung, Woosin;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.71-77
    • /
    • 2015
  • Ultrasonic imprinting is a micropattern replication technology for a thermoplastic polymer surface that uses ultrasonic vibration energy; it has the advantages of a short cycle time and low energy consumption. Recently, ultrasonic imprinting has been further developed to extend its functionality: (i) selective ultrasonic imprinting using mask films and (ii) repetitive ultrasonic imprinting for composite pattern development. In this study, selective ultrasonic imprinting was combined with repetitive imprinting in order to replicate versatile micropatterns. For this purpose, a repetitive imprinting technology was further extended to utilize mask films, which enabled versatile micropatterns to be replicated using a single mold with micro-prism patterns. The replicated hybrid micropatterns were optically evaluated through laser light images, which showed that versatile optical diffusion characteristics can be obtained from the hybrid micropatterns.

핫 엠보싱을 이용한 3차원 미세 구조물 복제에 관한 연구

  • 박선준;정성일;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.150-150
    • /
    • 2004
  • 현재의 핫 엠보싱 기술은 나노/마이크로 패턴의 복제 기술로 다방면에서 연구되어지고 있다. 기존에 알려진 핫 엠보싱 기술은 하드 몰드를 사용하여 열과 압력을 가해서 PR 패턴 제작이나 나노/마이크로 구조물을 제작하였다. 그러나 이러한 하드 몰드의 사용은 3차원 구조물을 구현할 수 없다는 단점이 있다. 이에 본 연구에서는 하드 몰드 대신 소프트 몰드를 사용하여 3차원 미세 구조물을 구현해 보고자 한다.(중략)

  • PDF

State of the Art in Life Assessment for High Temperature Components Using Replication Method (표면복제기법을 이용한 고온 설비의 수명평가 현황과 적용사례)

  • Kim, Duck-Hee;Choi, Hyun-Sun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.489-496
    • /
    • 2010
  • The power generation and chemical industry have been subjected to further material degradation with long term operations and need to predict the remaining service life of components, such as reformer tube and steam turbine rotor, that have operated at elevated temperatures. As a non-destructive technique, replication method with reliable metallurgical life and microstructural soundness assessment has been recognized with strongly useful method until now. Developments of this method have variously accomplished by new quantitative approach, such as carbide analysis, with A-parameter and grain deformation method. An overview of replication, some new techniques for material degradation and life assessment were introduced in this paper. Also, on-site applications and its reasonableness were described. As a result of having analyzed microstructure by replication method, carbide approach was quantitatively useful to life assessment.

Development of micromolding technology using silicone rubber mold (실리콘 고무형을 이용한 미세복제기술 개발)

  • 정성일;임용관;박선준;최재영;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.46-49
    • /
    • 2003
  • Microsystem technology (MST) which originated from semiconductor processes has been widely spreaded into tile other industry such as sensors, micro fluidics and displays. The MST, however. has been troubled in spreading with its high cost and material limitations. So, in this paper, new process for micromolding technology using silicone rubber mold was introduced. Silicone rubber mold, which was fabricated by vacuum casting. can be transferred a master pattern to a final product with the same shape but different materials. In order to verify the possibility of application of silicone rubber mold to the MST, its transferability was evaluated. and then it applied to the fabrications of polishing pad and PDP barrier ribs.

  • PDF

Development of Micromolding Technology using Silicone Rubber Mold (실리콘 고무형을 이용한 미세복제기술 개발)

  • Chung, Sung-Il;Im, Yong-Gwan;Kim, Ho-Youn;Choi, Jae-Young;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1380-1387
    • /
    • 2003
  • Microsystem technology (MST) which originated from semiconductor processes has been widely spreaded into the other industry such as sensors, micro fluidics and displays. The MST, however, has been troubled in spreading with its high cost and material limitations. So, in this paper, new process for micromolding technology using silicone rubber mold was introduced. Silicone rubber mold, which was fabricated by vacuum casting, can be transferred a master pattern to a final product with the same shape but different materials. In order to verify the possibility of application of silicone rubber mold to the MST, its transferability was evaluated, and then it applied to the fabrications of polishing pad and PDP barrier ribs.

The Review for Various Mold Fabrication toward Economical Imprint Lithography (미세패턴 전사기법을 위한 다양한 몰드 제작법 소개)

  • Kim, Joo-Hee;Kim, Youn-Sang
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.96-104
    • /
    • 2010
  • We suggest here a cost-effective replica fabrication method for transparent and hard molds for imprinting lithography such as NIL and S-FIL. The process starts with the use of a replica hard mold from a master, using a polymer copy as a carrier. The polymer copy as a carrier was treated by soluble process for forming anti-adhesion layer. Duplicated hard molds can eliminate direct contact between a hard master and a patterned polymer on a substrate and the generated contamination of a master during the imprinting process. The replica hard mold exhibits the glass-like properties introduced here, such as transparency and hardness, make it appropriate for nanoimprint lithography and step-and-flash imprint lithography.

A Study on a Microreplication Process for Real 3D Structures Using a Soft Lithography (동분말이 함유된 에폭시 수지를 이용한 마이크로 기어의 제작에 관한 연구)

  • Chung Sungil;Park Sunjoon;Lee Inhwan;Jeong Haedo;Cho Dongwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.29-36
    • /
    • 2004
  • In this paper, a new replication technique for a real 3D microstructure was introduced, in which a master Pattern WES made of photo-curable epoxy using a microstereolithography technology, and then it was transferred onto an epoxy-copper particle composite. A helical gear was selected as one of the real 3D microstructure for this study, and it was replicated from a pure epoxy to an epoxy composite. In addition, the transferability of the microreplication process was evaluated, and the properties of :he epoxy composite were compared to that of the pure epoxy, including hardness, wear-resistance and thermal conductivity.

연잎과 같은 Dual-scale의 $TiO_2$ 표면구조 제작방법

  • Choe, Hak-Jong;Sin, Ju-Hyeon;Han, Gang-Su;Kim, Gang-In;Lee, Heon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • 최근 산업에서는 산업의 고도화로 인한 환경오염이 큰 문제로 대두되고 있다. 이러한 문제점을 해결하기 위한 방안 중, 친환경소재에 대해 연구가 활발히 진행하고 있다. 연잎의 자기세정효과(self-cleaning effect)에 관한 연구는 이러한 친환경소재에 대한 연구 중 하나이다. 연잎의 표면은 마이크로 크기의 돌기와 나노 크기의 왁스의 dual-scale의 구조로 이루어져 있으며, 왁스의 경우 소수성을 가진다. 이러한 dual-scale 구조와 소수성의 왁스에 의해 초소수성이 발현되고, 결과적으로 연잎의 자기세정효과가 발현된다. 본 연구에서는 나노임프린트 리소그래피와 수열합성법을 이용한 나노로드 성장을 이용하여, 연잎의 dual-scale의 표면구조를 형성하는 실험을 진행하였다. 나노임프린트 리소그래피와 수열합성법은 다른 공정에 비하여 상대적으로 적은 비용을 필요로 하고, 대면적에 적용이 가능한 기술이다. 실험 진행은 먼저 silicon 마스터 스탬프를 역상으로 복제한 PDMS (Polydimethylsiloxane) 스탬프와 $TiO_2$ sol을 이용하여 기판 위에 $TiO_2$ gel 패턴을 형성한 후, 열처리 과정을 통해 $TiO_2$ gel 패턴을 결정화한다. 다음으로 결정화된 $TiO_2$ 패턴 기판을 수열합성 방법을 이용하여 $TiO_2$ 나노로드를 무작위적으로 형성하였다. 마지막으로 소수성을 갖는 자기 조립 단분자막 용액을 이용하여 소수성 표면처리를 한 후 접촉각을 측정하였다. 본 연구에서 개발한 기술을 이용하여 다양한 형태의 기판에 초소수성 표면을 형성할 수 있고, 자기세정효과를 갖는 표면을 구현할 수 있다.

  • PDF