• Title/Summary/Keyword: 미생물 군집 분석

Search Result 361, Processing Time 0.023 seconds

Analysis of Soil Properties and Microbial Communities for Mine Soil Vegetation (폐광산지역 토양 식생복원 과정 내 토양특성 및 미생물 군집 변화 분석)

  • Park, Min-Jeong;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Mine soil contamination by high levels of metal ions that prevents the successful vegetation poses a serious problem. In the study presented here, we used the microbial biocatalyst of urease producing bacterium Sporosarcina pasteurii or plant extract based BioNeutro-GEM (BNG) agent. The ability of the biocatalysts to bioremediate contaminated soil from abandoned mine was examined by solid-state composting vegetation under field conditions. Treatment of mine soil with the 2 biocatalysts for 5 months resulted in pH increase and electric conductivity reduction compared to untreated control. Further analyses revealed that the microbial catalysts also promoted the root and shoot growth to the untreated control during the vegetation treatments. After the Sporosarcina pasteurii or plant extract based BNG treatment, the microbial community change was monitored by culture-independent pyrosequencing. These results demonstrate that the microbial biocatalysts could potentially be used in the soil bioremediation from mine-impacted area.

Application of Next Generation Sequencing to Investigate Microbiome in the Livestock Sector (Next Generation Sequencing을 통한 미생물 군집 분석의 축산분야 활용)

  • Kim, Minseok;Baek, Youlchang;Oh, Young Kyoon
    • Journal of Animal Environmental Science
    • /
    • v.21 no.3
    • /
    • pp.93-98
    • /
    • 2015
  • The objective of this study was to review application of next-generation sequencing (NGS) to investigate microbiome in the livestock sector. Since the 16S rRNA gene is used as a phylogenetic marker, unculturable members of microbiome in nature or managed environments have been investigated using the NGS technique based on 16S rRNA genes. However, few NGS studies have been conducted to investigate microbiome in the livestock sector. The 16S rRNA gene sequences obtained from NGS are classified to microbial taxa against the 16S rRNA gene reference database such as RDP, Greengenes and Silva databases. The sequences also are clustered into species-level OTUs at 97% sequence similarity. Microbiome similarity among treatment groups is visualized using principal coordinates analysis, while microbiome shared among treatment groups is visualized using a venn diagram. The use of the NGS technique will contribute to elucidating roles of microbiome in the livestock sector.

Batch Decolorization of Reactive Dye Waste Water by a Newly Isolated Comamonas sp. AEBL-85. (반응성 염료폐수 처리를 위한 Comamonas sp. AEBL-85 분리 및 회분식 탈색)

  • 이은열
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.577-581
    • /
    • 2004
  • Comamonas sp. AEBL-85 was isolated from microbial granules in an activated sludge process of long-term operated for the treatment of reactive azo dye, and characterized its capability to decolorize Reactive Black 5. The effects of adding carbon source and nitrogen source on the extent of decol-orization were analyzed to develop an optimal medium. The optimum initial pH and temperature wire 6.0 and 35$^{\circ}C$, respectively. Reactive Black 5 of 50 mg/l was readily decolorized up to 95% within 40 hr by Comamonas sp. AEBL-85.

Analysis of Microbial Community Structure in Biological Wastewater Treatment Process of Mixed Wastewater Treatment Facility using Environmental·Ecological Technique (환경·생태학적 기법을 이용한 혼합폐수 처리장의 생물학적 처리공정 내의 미생물 군집 특성 분석)

  • Son, Hyeng-Sik;Lee, Sang-Joon;Son, Hee-Jong
    • KSBB Journal
    • /
    • v.28 no.2
    • /
    • pp.80-85
    • /
    • 2013
  • The bacterial community structure in a biological reactor fed influent from a wastewater treatment system was investigated by denaturing gradient gel electrophoresis (DGGE) and in situ hybridization. Sludges were collected from three biological reactors (aerobic, oxic, and anoxic tanks) at the M wastewater treatment facility (WTF). The influent of the MWTF consisted of mixed tannery wastewater (40~65%) and seafood wastewater (35~60%). The treatment processes resulted in a removal efficiency for BOD (biochemical oxygen demand) and COD (chemical oxygen demand) of 83.6~98.2% and 72.8~84.6%, respectively for tannery wastewater than for seafood wastewater resulted in greater survival of biomass in the biological reactors and a higher removal of BOD, COD, and T-N of about 8~18%. In contrast, addition of greater amounts of seafood wastewater decreased the amount of biomass in the bioreactors due to the increasing concentration of chromium from that wastewater and it also. The dominant bacterial species during the high seafood wastewater input period were Burkholderia cepacia (JX901049) and an uncultured bacterium (JF247555), while Pseudomonas geniculata (HQ256559) was dominant during the high tannery wastewater input period. Flavobacteriumsp. BF.107 (FM173271) and Hyphomicrobium zavarzinii (Y14306) were dominant under anoxic conditions.

Effect of the Long-term Application of Organic Matters on Microbial Diversity in Upland Soils (유기물 장기 연용이 밭토양 미생물의 다양성에 미치는 영향)

  • Suh, Jang-Sun;Kwon, Jang-Sik;Noh, Hyung-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.987-994
    • /
    • 2010
  • To investigate the effect of long term application of organic matter in upland soils, plots for treatments of NPK, NPK+pig manure compost, rape seed cake, rice straw compost, and green manure were set up. Populations of Bacillus and Gram negative bacteria were high in the plot treated with green manure application, but microbial biomass was increased with chemical fertilizer or pig manure compost in upland soils. Activities of phosphomonoesterase and dehydrogenase were high with organic matter application comparing to control. Cluster patterns analysed using phospholipid fatty acid of plots treated with rice straw and or pig manure compost were clearly different comparing with other treatments. Dominant bacteria in upland soils were Bacillus flexus, B. subtilis and B. megaterium. And the strains isolated from upland soils had amylase, protease and lipase activities.

Effect of Fish Meal Liquid Fertilizer Application on Soil Characteristics and Growth of Cucumber(Cucumis sativus L.) for Organic Culture (유기농 오이재배를 위한 어분액비 공급이 토양특성 및 오이 수량에 미치는 영향)

  • An, Nan-Hee;Cho, Jung-Rai;Gu, Ja-Sun;Kim, Young-ki;Han, Eun-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.13-21
    • /
    • 2017
  • This study was carried out to evaluate the application effects of fish meal liquid fertilizer on soil characteristics and growth of cucumber for organic cultivation. Cucumber in greenhouse was transplanted on March $31^{th}$ in 2016, and the experimental treatments involve six treatments: No fertilizer, 0, 25, 50, and 100 mg/L N application by fish meal liquid fertilizer and chemical fertilizer. In the results of soil chemical property, application of 100 mg/L of fish meal liquid fertilizer showed a significant differences in pH, K, and Mg contents. The soil microbial community varied in relation to the fish meal liquid fertilizer treatments. Microbial biomass was lower in the chemical fertilizer than in the liquid fertilizer treatment. Result of principal component analysis obtained from Ecoplate showed that fish meal liquid fertilizer treatments, no liquid fertilizer, chemical fertilizer, and no fertilizer were divided into distinct groups, with the no fertilizer treatment located furthest from the other treatments. There were no significant differences in plant height of cucumber between the fish meal liquid fertilizer treatments and chemical fertilizer treatments. Also, the cucumber yield did not vary significantly between the concentrations of liquid fertilizers, and there were also no significant differences in the yield among the fish meal liquid and chemical fertilizer treatments. In conclusion, it is suggested that the application of fish meal liquid fertilizer can be used as a additional fertilizer for cucumber production with organic culture in greenhouse.

Eco-friendly remediation and odor control of a contaminated urban stream using beneficial microorganisms (생물증강법을 이용한 도심 오염 소하천의 친환경적 수질정화 및 악취제어)

  • Chang, Jae-Soo;Song, Jikyung;Kim, In-Soo;Yoo, Jangyeon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.389-397
    • /
    • 2015
  • Dongchun, one of the representative streams in urban area, is a downstream that is connected to Hogyechun, Bujeonchun, Jeonpochun, Danggamchun, and Gayachun as its upstream. Hogyechun has been mostly covered with concrete structures for decades, causing sewage pollution from the upstream, overflow of the downstream region and other serious pollution that gave rise to many civil complaints from the residents nearby. In this study, we analyzed 3 stations, including control station for water quality and malodor changes of Hogyechun after applying the microbial augmentation (BM-2) for a few months including the rainy season. Amounts (g/h) of DO in the middle site (Middle) and the downstream site (Borim) increased by 1.7 times compared with the upstream site (Chuhae) after augmentation for about 2 months. Amounts (g/h) of COD and $NO_3{^-}N$ decreased by 2 and 1.7 times, respectively, in the middle and downstream sites while SS increased by 7.5 and 22 times in the middle and downstream sites, respectively. Moreover, odor removal efficiencies at the middle and downstream sites were 65% and 19%, respectively, indicating the microbial activity in reduction of malodor in the polluted stream. The dominant microbial species of the sampling sites were Hydrogenophaga caeni, Sphaerotilus natans, Acidovorax radicis, Acidovorax delafieldii, and Cloacibacterium rupense. Densities of the two species Sphaerotilus natans and Acidovorax delafieldii were significantly increased in the middle site after augmentation which possessed potential odor removal and denitrification activity, respectively. Potential pathogens (e.g., Arcobacter cryaerophilus) were also removed from the middle site after the implementation.

Analysis of Foodborne Pathogens in Food and Environmental Samples from Foodservice Establishments at Schools in Gyeonggi Province (경기지역 학교 단체급식소 식품 및 환경 중 식중독균 분석)

  • Oh, Tae Young;Baek, Seung-Youb;Koo, Minseon;Lee, Jong-Kyung;Kim, Seung Min;Park, Kyung-Min;Hwang, Daekeun;Kim, Hyun Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1895-1904
    • /
    • 2015
  • Foodborne illness associated with food service establishments is an important food safety issue in Korea. In this study, foodborne pathogens (Bacillus cereus, Clostridium perfringens, Escherichia coli, pathogenic Escherichia coli, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Vibrio parahaemolyticus) and hygiene indicator organisms [total viable cell counts (TVC), coliforms] were analyzed for food and environmental samples from foodservice establishments at schools in Gyeonggi province. Virulence factors and antimicrobial resistance of detected foodborne pathogens were also characterized. A total of 179 samples, including food (n=66), utensil (n=68), and environmental samples (n=45), were collected from eight food service establishments at schools in Gyeonggi province. Average contamination levels of TVC for foods (including raw materials) and environmental samples were 4.7 and 4.0 log CFU/g, respectively. Average contamination levels of coliforms were 2.7 and 4.0 log CFU/g for foods and environmental swab samples, respectively. B. cereus contamination was detected in food samples with an average of 2.1 log CFU/g. E. coli was detected only in raw materials, and S. aureus was positive in raw materials as well as environmental swab samples. Other foodborne pathogens were not detected in all samples. The entire B. cereus isolates possessed at least one of the diarrheal toxin genes (hblACD, nheABC, entFM, and cytK enterotoxin gene). However, ces gene encoding emetic toxin was not detected in B. cereus isolates. S. aureus isolates (n=16) contained at least one or more of the tested enterotoxin genes, except for tst gene. For E. coli and S. aureus, 92.7% and 37.5% of the isolates were susceptible against 16 and 19 antimicrobials, respectively. The analyzed microbial hazards could provide useful information for quantitative microbial risk assessment and food safety management system to control foodborne illness outbreaks in food service establishments.

Analysis of research trends for utilization of P-MFC as an energy source for nature-based solutions - Focusing on co-occurring word analysis using VOSviewer - (자연기반해법의 에너지원으로서 P-MFC 활용을 위한 연구경향 분석 - VOSviewer를 활용한 동시 출현단어 분석 중심으로 -)

  • Mi-Li Kwon;Gwon-Soo Bahn
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • Plant Microbial Fuel Cells (P-MFCs) are biomass-based energy technologies that generate electricity from plant and root microbial communities and are suitable for natural fundamental solutions considering sustainable environments. In order to develop P-MFC technology suitable for domestic waterfront space, it is necessary to analyze international research trends first. Therefore, in this study, 700 P-MFC-related research papers were investigated in Web of Science, and the core keywords were derived using VOSviewer, a word analysis program, and the research trends were analyzed. First, P-MFC-related research has been on the rise since 1998, especially since the mid to late 2010s. The number of papers submitted by each country was "China," "U.S." and "India." Since the 2010s, interest in P-MFCs has increased, and the number of publications in the Philippines, Ukraine, and Mexico, which have abundant waterfront space and wetland environments, is increasing. Secondly, from the perspective of research trends in different periods, 1998-2015 mainly carried out microbial fuel cell performance verification research in different environments. The 2016-2020 period focuses on the specific conditions of microbial fuel cell use, the structure of P-MFC and how it develops. From 2021 to 2023, specific research on constraints and efficiency improvement in the development of P-MFC was carried out. The P-MFC-related international research trends identified through this study can be used as useful data for developing technologies suitable for domestic waterfront space in the future. In addition to this study, further research is needed on research trends and levels in subsectors, and in order to develop and revitalize P-MFC technologies in Korea, research on field applicability should be expanded and policies and systems improved.

Changes of the Bacterial Community Structure Depending on Carbon Source in Biological Phosphate Removing Process (생물학적 인 제거 공정에서 탄소원에 따른 미생물군집구조의 변화)

  • Yeo, Sang-Min;Lee, Young-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.165-172
    • /
    • 2006
  • In order to analyze the bacterial community structure including P-removal related organisms, PAOs(polyphosphate accumulating organisms) and GAOs(glycogen-accumulating non-poly-P organisms) occurred in biological phosphate removing process, 2 reactors(SBR; sequencing batch reactor) were operated on different carbon sources(sodium acetate, glucose). For the analysis of bacterial community structure, molecular methods(FISH: fluorescent in situ hybridization and DGGE; denaturing gel gradient electrophoresis) were employed. After 100 days reaction, $PO_4-P$ in effluent dropped to 3.92 mg/L in SBR #1(60.8% removal) fed by sodium acetate, and at the same time FISH results showed that ${\beta}$-subclass proteobacteria(39.67%) and PAOs(45.10%) were dominantly present whereas those value in SBR #2 fed by glucose was 8.30 mg/L(17% removal), and ${\gamma}$-subclass proteobacteria were considerably observed(23.89%) and PAOs was 21.42%. Also the result of DGGE indicated that ${\beta}$-subclass proteobacteria was dominantly observed in SBR #1. However as the temperature increased, the proportion of ${\beta}$-subclass proteobacteria and PAOs decreased, but phosphorus removing inhibitors(GAOs) increased. It suggests that the environmental factor like as temperature and types of carbon source had influence on the prevalence of phosphorus removing organism(PAOs) and phosphorus removing inhibitors(GAOs) in biological phosphate removing process.