• 제목/요약/키워드: 미립자 플라즈마

검색결과 15건 처리시간 0.036초

모델링을 통한 Ar 플라즈마 중의 미립자 운동에 관한 연구 (Modeling and Analysis of Fine Particle Behavior in Ar Plasma)

  • 임장섭;소순열
    • 조명전기설비학회논문지
    • /
    • 제18권1호
    • /
    • pp.52-59
    • /
    • 2004
  • 미립자 플라즈마란 입경이 수[$\mu\textrm{m}$]이하의 거의 일정한 크기를 가진 미립자가 다수로 생성 및 유지되면서, 정 또는 부외 전하를 가지고 기체 플라즈마 중에 부유하는 상태를 말한다. 플라즈마 프로세스에서는 이러한 미립자가 집적회로에 중착되어 막의 열화, 회로 배선의 불량 및 단선 등의 약영향을 끼치는 것으로 인식되고 있으며, 이러한 부분에 대한 억제나 제어에 관한 연구가 진행되고 있다. 본 연구에서는 유체 모델을 이용한 시뮬레이션으로부터 방전 챔버내의 Ar 플라즈마의 현상을 이해하고, Ar 플리즈마 중에 미립자를 투입하여 그 움직임을 분석하여, 플라즈마 중의 미립자 운동의 핵석 결과로서는, 하부 전극 면위에 비교적 규칙성을 갖는 미립자가 배열하는 것을 확인할 수 있었다. 또한, 약 전리 플라즈마에서는 전지의 이동로가 크기 때문에 미립자의 대전량은 평균 전자 에너지에 크게 의존하는 것을 알 수 있었다.

졸-겔법에 의한 Au 미립자 분산 ZrO2 박막의 제조와 특성 (Fabrication and Properties of Au fine Particles Doped ZrO2 Thin Films by the Sol-gel Method)

  • 이승민;문종수
    • 한국세라믹학회지
    • /
    • 제40권5호
    • /
    • pp.475-480
    • /
    • 2003
  • 금 미립자를 ZrO$_2$중에 분산시켜 비선형광학재료, 선택흡수막 및 투과막 등 새로운 기능성 재료로 활용하기 위하여 Au/ZrO$_2$나노복합체 박막을 제조하였다. 딥-코팅법에 의해 제조한 박막을 열처리한 후 그 특성을 엑스선 회절분석,분광분석, 주사탐침현미경 및 전자현미경 등을 이용하여 조사하였다. Au/ZrO$_2$ 박막은 150 nm의 두께를 보였으며, 박막의 표면에 분산된 금 미립자의 크기는 15~35 nm였으며, 표면거칠기는 약 1.06 nm로 막질이 우수하였다. 그리고 가시광선 영역인 600~650 nm의 파장범위에서 금 미립자의 플라즈마 공명에 의한 흡수 피_크를 나타내어 비선형광학성을 확인할 수 있었다.

An Analysis of E${\times}$B Drift Movement Including Negatively Charged Nano-particles

  • 이지훈;양성채
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.328-328
    • /
    • 2011
  • 전기장 E와 자기장 B가 서로 수직으로 인가된 플라즈마에서 전자와 이온의 이동 현상은 이미 널리 알려져 있다. 그런데 최근 플라즈마 응용 산업의 발달에 따라 음이온을 포함한 플라즈마에서 나노미립자의 운동에 대한 해석이 필요하다. 특히 실리콘 박막의 에칭, 스퍼터링, PECVD 등의 공정에 사용되는 실란 플라즈마에서 음이온의 발생에 따른 오염은 주요한 문제가 된다. 따라서 본 연구에서는 이러한 음이온을 제거하기 위해 E${\times}$B 드리프트 운동을 이론적으로 계산 하였다. 결과적으로 음으로 대전된 나노미립자는 E${\times}$B 드리프트 운동의 반대 방향으로 이동 하였고, 드리프트 속도는 자속밀도가 증가함에 따라 함께 증가됨을 보였다. 따라서 서로 수직으로 인가된 전자기장에 의한 E${\times}$B 드리프트 운동을 통해 음이온을 방전 공간에서 제거할 수 있음을 알 수 있었다.

  • PDF

졸-겔법에 의한 Te 미립자 분산 SiO2 유리 박막의 제조와 특성 (Preparation and Characteristics of Te Fine Particles Doped SiO2 Glass Thin Films by Sol-gel Method)

  • 문종수;강봉상
    • 한국세라믹학회지
    • /
    • 제41권1호
    • /
    • pp.24-29
    • /
    • 2004
  • Te(Tellurium) 미립자를 $SiO_2$ 박막에 분산시켜 비선형 광학재료, 선택흡수막 및 투과막 등 새로운 기능성 재료로 활용하기 위하여 Te/$SiO_2$ 나노 목합체 박막을 제조하였다. 가수분해 조건을 변화시켰을 때 박막표면에 분산시킨 입자의 크기와 형상이 재료의 물성에 미치는 영향을 열처리 후의 시차중량분석과 엑스선 회절분석, 분광분석, 원자력간 현미경 그리고 전자현미경 관찰 등을 통하여 조사하였다. 제조된 박막의 광흡수 스펙트럼에스 Te 미립자의 플라즈마 공명에 의한 550nm 부근의 흡수피크가 관찰되어 비선형 광학성을 확인할 수 있었다. 박막의 표면 거칠기는 약 2.5nm 내외였고, Te 미립자의 크기는 약 5~10nm였다.

TEOS/O2용 플라즈마 반응기에서의 미립자 성장에 대한 실험적 분석 (Experimental Analysis on Particle Growth in TEOS/O2 Plasma Reactor)

  • 홍성택;김교선
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.175-179
    • /
    • 2003
  • A study on the particle growth in $TEOS/O_2$ plasma was performed by observing the particle size and its morphology by TEM. The qualitative chemical analysis of particles was also determined by the EDS (Energy Dispersive X-Ray Spectrometer). The effects of process variables such as the plasma on-time and bubbler temperature on the particle growth were investigated. The particle size becomes larger as the plasma on-time because of the longer coagulation, and also as the bubbler temperature increases because of the faster coagulation between particles.

  • PDF

TEOS/O2 플라즈마 반응기에서 미립자 성장에 대한 실험적 분석 (Experimental Analysis on Particle Growth m TEOS/O2 Plasma Reactor)

  • 김동주;김교선
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.149-153
    • /
    • 2001
  • A study on the particle growth in $TEOS/O_2$ plasma was performed, and particle size and its distribution was measured by the electrical aerosol analyzer (EAA), light scattering particle size analyzer and the particle size was also determined by SEM. The effects of process variables such as total gas flow rate, reactor pressure, supplied power and initial reactant concentration on the particle growth were investigated. From the EAA results, the particle size distribution is divided into three groups of the cluster size and the small and large size particles. The particle size distribution measured by the light scattering particle size analyzer becomes bimodal, because the cluster size particles smaller than 20 nm in diameter cannot be detected by the light scattering particle size analyzer. The size of particles measured by the light scattering particle size analyzer is in good agreements with those by the SEM. Also we could understand that the particle formation is very sensitive to the changes of reactor pressure and reactant concentration. As the total gas flow rate increases, the particle size decreases because of the shorter residence time. As the reactor pressure, or the reactant concentration increases, the particle concentration increases and the particles grow more quickly by the faster coagulation between particles.

  • PDF