미디언 필터링은 임펄스 형태의 잡음의 제거에 매우 효과적이어서, 많은 신호처리 응용분야에서 널리 사용되어왔다. 하지만, 비선형성에 의한 시간 복잡도로 인하여, 미디언 필터링은 주로 작은 필터윈도우 크기를 사용하였다. 고속 미디언 필터링 알고리즘에 대한 많은 연구가 진행되었지만 대부분 영상과 같은 한정된 정수값을 갖는 입력데이타에만 적용될 수 있으며, 실수형 2차원 데이터의 고속 미디언 필터링 알고리즘에 대한 연구는 미미한 실정이다. 본 논문에서는 간단하면서도 실수형 2차원 데이터를 고속으로 미디언 필터링할 수 있는 알고리즘을 제안하고 Matlab의 2차원 미디언 필터와 힙(heap)기반의 2차원 미디언 필터와 성능을 비교하였다. 다양한 필터윈도우 크기에 대해서 제안된 알고리즘이 Matlab의 필터보다는 훨씬 빠르고, 힙기반의 필터보다는 대부분 일관되게 더 빠른 결과를 내었다. 또한, 한정된 데이터 값 범위를 갖는 실수형 2차원 데이터는 비트수가 큰 정수형 고속 2차원 미디언 필터링 알고리즘을 이용하여 거의 오차없이 매우 빠르게 미디언 필터링을 할 수 있음을 보였다.
최근에 위,변조 영상의 처리이력 복구를 위한 포렌식 툴로서 미디언 필터링 (MF: Median Filtering) 검출기가 크게 고려되고 있다. 미디언 필터링의 분류를 위한 미디언 검출기는 적은 양의 특징 셋과 높은 검출율을 갖도록 설계되어야 한다. 본 논문은 변조된 영상의 미디언 필터링 검출을 위한 새로운 방법을 제안한다. BMP를 미디언 윈도우 사이즈에 의하여 여러 미디언 필터링 영상으로 변환하고, 윈도우 사이즈에 따른 차분포 값을 계산하여 그 값으로 미디언 필터링 윈도우 사이즈와 같은 특징 셋을 만든다. 미디언 필터링 검출기에서, 특징 셋은 잠재성장 모델링 (LFM: Latent Growth Modeling)을 사용하는 모델 특성으로 변환된다. 실험에서, 테스트 영상은 TP (True Positive)와 FN (False Negative) 두 분류로 판별된다. 제안된 알고리즘은 분류 효율성이 TP와 FN의 혼동에서 최소거리 평균이 0.119로서 훌륭한 성능임이 확인 되었다.
본 논문에서는 임펄스 잡음을 제거하는 수정된 미디언 필터를 제안한다. 다단계를 기반으로 하는 제안 방법은 먼저 잡음 영상에서 잡음과 화소를 분리하고 잡음으로 판단된 화소를 미디언 필터링한다. 이때 필터링에 사용하는 주변 화소들을 에지에 따라 방향을 조절하여 필터링하는 선형필터링 한 값으로 대체한다. 따라서 제안하는 방법은 에지를 유지할 뿐 아니라 일정한 지역에서 잡음을 효과적으로 제거한다. 실험결과, 제안하는 방법이 기존 수정된 미디언 필터 보다 향상된 결과를 보인다.
본 논문에서는 디지털 영상의 배포에서, 위 변조에 사용되는 미디언 필터링 (Median Filtering : MF)을 분류하는 포렌식 검출 알고리즘을 제안한다. 이러한 문제를 해결하기 위한 특징벡터는 영상의 에지 검출량 정보 32, 64, 128에 대한 허프변환(Hough Transform)에 의하여, 각 허프라인 (Hough Line)의 양끝 좌표값과 Angle-Distance 좌표상의 허프픽크치 (Hough Peaks)를 조합하여 42-Dim.으로 구성하였다. 변조된 영상들 중에서 미디언 필터링을 분류하는 검출기는 SVM (Support Vector Machine)에서 특징벡터를 학습하여 구현되었다. 제안된 미디언 필터링 검출 알고리즘은 특징벡터의 길이가 10-Dim.의 MFR (Median Filtering Residual) 스킴 및 686-Dim.의 SPAM (Subtractive Pixel Adjacency Matrix) 스킴과 비교하여 원영상, 평균필터링 ($3{\times}3$), JPEG (QF=90, 70) 압축, 가우시안 필터링 ($3{\times}3$, $5{\times}5$) 영상 모두에서 미디언 필터링의 포렌식 분류율이 99% 이상의 성능을 확인하였다.
영상을 처리할 때 영상 위에 원하지 않는 방해물이 존재하는 것을 잡음이라 하며 사람의 눈이 아닌 기계에 의해서 영상을 취득하기 때문에 기계의 성능에 따라 영상의 질이 좌우된다. 원 영상에 임펄스 잡음이 존재하는 영상의 잡음 제거는 기존의 미디언 필터를 이용하여 잡음을 제거하였지만 비임펄스 잡음이 존재하는 경우에는 미디언 필터만을 이용해서 잡음의 제거가 이루어지지 않는다. 따라서 비임펄스 잡음이 존재하는 영상에 대한 잡음 제거는 본 논문에서 제안한 형태학적 연산을 이용하여 잡음을 제거 한 후 미디언 필터링에 의한 잡음제거 방범보다 더 효율적인 것을 본 실험을 통해 비교 증명하였다
본 논문에서는 저품질 이미지에 적용된 미디언 필터링를 검출하는 기법을 제안하고자 한다. 이러한 미디언 필터링검출은 이미지 포렌식 기법에 사용되고 있는 것으로 제안된 방법에서는 원본 이미지와 미디언 필터링된 이미지를 구분하기 위하여 공간 영역에서 통계적 특징 정보를 추출하고 확장시킨다. 확장된 특징 정보는 마르코프 모델을 사용하고 강인한 특징 집합을 생성하기 위하여 다중 방향 배열을 사용한다. 제안된 방법에서는 검출 정확도를 높이기 위하여 텍스처 연산자를 사용하고 SVM 분류기를 통하여 분류 모델을 훈련시킨다. 실험 결과에서는 JPEG 압축을 사용한 저품질 이미지에서 제안한 방법의 우수함을 보인다.
디지털 영상의 배포에서, 위 변조자에 의해 영상이 변조되는 심각한 문제가 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 영상의 픽셀값 경사도에 따른 특징벡터를 이용한 미디언 필터링 영상 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 계수를 1~6차까지의 6 Dim.을 계산한다. 그리고 경사도를 Poisson 방정식의 해에 의한 재구성 영상과 원영상과의 차영상으로 부터, 4 Dim. (평균값, 최대값 그리고 최대값의 좌표 i,j)의 특징벡터를 추출한다. 2 종류의 특징벡터는 10 Dim.으로 조합되어 변조된 영상의 미디언 필터링 (Median Filtering: MF) 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 미디언 필터링 검출 알고리즘은 동일 10 Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 비교하여 원영상, 평균필터링 ($3{\times}3$) 영상 그리고 JPEG (QF=90) 영상에서는 성능이 우수하며, Gaussian 필터링 ($3{\times}3$) 영상에서는 성능이 다소 낮지만, 성능평가 전체항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.
본 논문은 도로 영상에서 안개의 존재 여부를 판단하여 미디언 필터를 기반으로 하는 Retinex 알고리즘을 적용하고 영상을 개선한 후 최종적으로 차선을 검출하는 알고리즘을 제안한다. 영상 내에서 특정 관심 영역을 지정하고 해당 영역에서의 히스토그램을 분석하여 안개의 존재 여부를 판단한다. 안개 낀 영상으로 판단되는 경우 영상의 화질개선을 위해 미디언 필터를 기반으로 하는 Retinex 알고리즘을 이용해 대비도를 향상시킨다. 기존의 Retinex 알고리즘은 가우시안 필터를 적용하기 때문에 연산에 많은 시간이 걸리며, 특히 도로의 안개 영상에서는 차선의 특징이 두드러지지 않았다. 본 논문에서는 가우시안 필터를 미디언 필터를 바꿈으로써 도로의 안개 영상에 대해서 강인한 대비도 향상 효과를 얻을 수 있었다. 개선된 영상에서 차선에 대한 정보를 획득하기 위해서 이중 임계치를 이용한 이진화를 수행하고 라벨링을 통해서 검출된 차선의 크기, 방향 등의 정보를 계산하여 최종적인 차선을 검출한다. 제안한 알고리즘의 성능은 다양한 환경의 도로를 주행하면서 획득한 연속적인 영상들에 적용함으로써 제안하는 알고리즘의 효율성 및 우수성을 평가하였다.
파이프 용접은 중력의 영향으로 인하여 위치에 따라 같은 용접변수라도 비드 형상이 매우 달라 지게 된다. 또한 지금까지 많은 용접 기술자들이 위험하고 까다로운 환경에서 수작업으로 용접을 실행하였다. 따라서 이러한 이유로 용접 자동화 공정이 반드시 필요하게 된다. 본 연구에서는 FCAW를 사용하여 파이프 모재 대신 필릿 평판을 아래보기, 위보기 자세를 포함하여 9개 자세에서 실행하였다. 용접 자세를 비롯한 용접 변수와 비드 형상 변수간의 관계를 비선형 회귀 분석과 구간적 3차 에르미트 보간법을 이용하여 주어진 용접 변수에서의 비드 단면의 형상을 예측하고, 비드의 결함 유무를 파악하였다. 이러한 방법을 통하여 자세에 따라서 용접 결함이 없는 용접 변수를 구할 수 있었다. 시각센서를 이용하여 용접 후 비드 형상에 대해 모니터링을 실시하였다. 모니터링의 알고리즘은 영상획득, 이진화, 세선화, 적응형 미디언 필터링, 적응형 허프 변환, 용접 결함 검출의 순서로 구성되어 있으며, 본 연구에서는 보다 빠른 영상처리를 위하여 적응형 미디언 필터링을 제시하였다. 모니터링을 통하여 2차원 비드 단면뿐만 아니라, 디루니 삼각법을 적용하여 3차원으로 비드 표면을 표현할 수 있다. 보간법을 사용하여 얻은 비드 형상과 시각 센서를 통하여 얻은 비드 형상간의 비교를 통하여 본 연구의 적합성 여부를 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.