• Title/Summary/Keyword: 미곡 도정공장

Search Result 6, Processing Time 0.022 seconds

Development of an Internet-based Monitoring System of a Rice Processing Complex (미곡 도정공장의 인터넷 기반 감시시스템 개발)

  • Yan, T.Y.;Chung, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.243-250
    • /
    • 2004
  • 본 연구에서는 국내 미곡도정공장의 도정기계 작동상태와 가공된 발 품질의 원격감시를 위해서 인터넷기반 감시시스템을 개발하고자 하였다. 인터넷 감시시스템은 Laboratory Virtual Instrument Engineering Workbench(Lab VIEW)를 이용하여 개발되었으며 Hypertext Transfer Protocol(HTTP)을 제공할 수 있는 중앙서버, 현장제어용 Programmable logic controller (PLC) 및 각종 센서 등으로 구성되었다. 비상상태를 대비하기 위하여 도정기계를 원격으로 제어(ON/OFF)할 수 있도록 제어알고리즘을 설계하였다. 개발된 인터넷기반 감시시스템은 미곡 도정공장에 설치한 모든 도정기계의 작동상태, 백미 탱크내의 백미 무게와 백미의 온도 및 평형상대습도를 실시간으로 감시할 수 있었으며, 원격으로 측정한 백미탱크내의 평형온도 및 평형상대습도를 이용하여 백미의 함수율도 예측할 수 있었다. 거리 및 인터넷속도에 의해 발생된 시간지연의 측정과 원격으로 수집된 자료의 검증을 통해 인터넷 감시시스템의 성능을 평가하였다. 인터넷상의 시간지연(서울-광주간)은 약 1.2$\pm$0.2s 이었다.

Optimal Design and Development of a Rice Mill Pilot Plant by Computer Simulation (II) -Development and Performance Evaluation of a Rice Mill Pilot Plant- (컴퓨터 시뮬레이션에 의한 미곡 도정공장의 적정설계 및 개발(II) -미곡 도정시스템의 개발 및 성능평가-)

  • 정종훈;김보곤;최영수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.262-274
    • /
    • 1995
  • A rice mill pilot plant was designed and developed in the basis of the simulation results on the mill plants. The performance of the developed rice mill plant was evaluated, and the simulation model on the mill system was validated with the experimental data in the mill plant. The results of this study were as followings : 1. A rice mill pilot plant with the capacity of 0.5 t/h was designed and developed. 2. The hulled ratio of the mill plant was 87.3%, and the milled rice recovery and the head rice recovery of the cleaned rice were 74% and 87% , respectively. The degree of milling of the cleaned rice was 10.6% with a high polish. The intensity of the cleaned rice appeared high compared with that of the milled rice in the analysis of whiteness test using an image processing system. 3. The bottleneck, processing time, and production amount of the developed mill system almost coincided with those of the simulation of the rice mill plant. The developed simulation model of the rice mill plant was proven to be applicable to the design of a rice mill plant through experiments.

  • PDF

Optimal Design and Development of a Rice Mill Pilot Plant by Computer Simulation -Simulation of a Rice Mill Pilot Plant- (컴퓨터 시뮬레이션에 의한 미곡 도정공장의 적정설계 및 개발(I) -미곡 도정 시스템의 시뮬레이션-)

  • 정종훈;김보곤
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.47-57
    • /
    • 1995
  • Rice Processing Complex(RPC) have being constructed with a rice mill plant and a facility of drying and storage to overcome problems caused by UR and to produce good quality of rice. An optimal design of a rice mill plant was required to successfully construct and operate it. The development of a simulation model was essential to the design of a rice mill plant. So, all the objectives of this study were to develop a simulation model for the design of a rice mill plant and to develop and evaluate the rice mill system. In this study the simulation model was developed to design a rice mill plant using SLAMSYSTEM, one of simulation languages. The results of this study were as followings. 1. A simulation model was developed with SLAMSYSTEM to represent the processes of a rice mill plant. The simulation model was used to design a rice mill pilot plant with the capacity of 0.5 ton per hour. The rice mill pilot plant was analyzed by the model with alternatives. 2. In the simulation the rice mill system was much influenced by the separating efficiency of a brown rice separator. Especially, the bottleneck of grain flow occurred at the buffer tank for brown rica. separator under 50% separating efficiency of brown rice separator. Hence, as the alternative simulation was conducted under 60% , 70% separating efficiency of brown rice separator, the bottleneck of the system could be minimized at the 60% separating efficiency of brown rice separator. 3. In the alternative simulation the bottleneck of the system was minimized under the hulling capacity of 1 t/h and 60% separating efficiency of brown rice separator with the capacity of 1 t/h. Under such a condition the max. weight of waiting entities at buffer tanks was less 250kg. So, the capacities of the buffer tanks were determined in the basis of simulation results. 4. The milled rice recovery and head rice recovery of the milling system were 74% and 92% in the simulation, respectively. These results of simulation almost corresponded to those of actual rice mill plants. The developed simulation model could be well applied to design a rice mill plant.

  • PDF