최근에 물체영상들로부터 3차원 물체 모델을 복원할 수 있는 셀프캘리브레이션 기술에 대한 연구가 활발히 진행되고 있다. 이 셀프캘리브레이션 기술의 핵심은 F행렬이며, 복원되는 3차원 물체 모델의 정확도는 물체영상들 사이에서 유도해내는 F행렬의 추정의 정확도에 좌우된다. F행렬을 추정하기 위해 일반적으로 선형최소화방법이 적용되고있다. 그러나 본 논문에서는 보다더 정확한 F행렬의 추정을 위해 비선형 최소화방법인 Levenberg-Marquardt 기법을 적용하였다. 또한 F행렬의 정확도를 감소시키는 부정확한 대응점들 (corresponding points)과 오차를 많이 포함하고 있는 대응점들, 즉 outliers를 Monte Carlo 기술을 적용하여 제거하였다. 본 논문에서 적용한 방법들로 추정한 F행렬의 정확도를 분석한 결과, outliers를 제거하기 전보다 제거한 후의 정확도가 31% 향상되었고, 선형적 추정 F행렬보다 비선형적 추정 F행렬이 22% 향상되었음을 알 수 있었다.
본 논문에서는 spatial gradient를 이용한 강인한 물체 추출 방법을 제안한다. 제안한 방법은 먼저 복잡한 환경과 다양한 빛의 변화에 의해 나타나는 에러 값 등을 해결하기 위해 기존에 제안된 입력 영상과 기준 영상에서 밝기와 색 성분을 이용하여 최초 배경을 제거한다. 배경을 제거한 다음, 그림자로 인식되어 전경 영역에 추가된 부분을 RGB 칼라 모델과 정규화 된 RGB 칼라 모델을 이용하여 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 갖는 영역을 제거한다. 마지막으로, 배경으로 인식되어 전경으로부터 제거된 부분을 입력 영상의 공간상 정보인 spatial gradient와 HSI 칼라 모델을 이용하여 복구하는 방법을 제안한다. 마지막으로, 복잡하고 다양한 실내.외 환경에서의 실험을 통해 그 응용 가능성을 증명한다.
1. 종자형성계통군의 생엽중은 5월30일, 6월30일 및 6월15일 화경제거가 화경무제거 보다 약 $29{\sim}12%$ 무거웠으며, 유식물체형성계통군의 생엽중은 6월15일, 5월30일 및 6월30일 화경제거 순으로 무제거보다 약$21{\sim}4%$ 무거웠다. 2. 종자형성계통군의 생근경중은 5월30일, 6월15일 및 6월30일 화경제거가 화경무제거 보다 약$41{\sim}33%$ 증수하였으며, 유식물체형성계통군의 생근경중은 5월30일 화경제거가 화경무제거 보다 약 3% 증수하였으나, 통계적 유의성은 없었다. 3. 종자형성계통군의 메탄올엑스함량은 5월30일 화경제거와 6월 15일 화경제거가 39.77% 및 39.17%로 6월 30일 화경제거보다 높았으며, 유식물체 형성계통군의 메탄올엑스함량은 처리별 통계적 유의성이 없었다. 4. 종자형성계통군의 조사포닌함량은 5월 30일 화경제거가 7.50%로 무제거 (5.67%)보다 높았으며, 유식물체형성계통군의 조사포닌함량은 처리별 통계적 유의성이 없었다.
본 논문은 하나의 움직이는 카메라와 수시로 바뀌는 배경을 가진 환경 하에서 파라미터를 사용하지 않는 외곽선을 사용한 움직이는 물체의 외곽을 추적하고, 추적된 물체의 외곽을 다른 장면에서 가져온 배경으로 대체하여 추적물체를 제거하는 기법을 제안한다. 먼저 캐니 에지 이미지(map)를 수정하여 만들어 내고, 이들 에지들의 강도에 대한 정보를 LOD (Level-of-Detail)로 만든 결과 LOD 캐니 에지 이미지(map)을 생성한다. 이들 LOD 캐니 에지 이미지 화소에 대해 그래프를 사용한 경로 설정 방법을 사용한다. 이 작업으로 결정되는 외곽선을 이용하여 추적대상이 되는 물체를 다른 이미지에서부터 얻은 배경이미지로 대체함으로써 제거한다. 우리의 물체 추적을 위한 방법은 LOD 수정된 캐니에지 이미지를 위주로 이루어진다. 추가 에지 정보를 얻기 위해 LOD 계층에 따라서 자세한 외곽선 정보를 얻는다. 우리의 경로 설정 방법은 보다 강한 이미지 차에서 만들어진 에지 화소를 선호하는 것이다. 이 방법은 이전 외곽선 정보를 최소한으로 참고하기 때문에, 이전 외곽선 정보를 새로운 외곽선을 생성하는데 있어서 가중치를 사용 이전 외곽선을 포함시키는 방법에 비해 탁월하다. 외곽선 추적 후 추적 물체를 배경으로 대체하는데, 첫 이미지 배경은 이후에 나타나는 이미지로부터 추적 물체에 대해 가려진 배경정보를 가져오는 카메라 운동법이라 부르는 방법에 의하여 계산되어진다. 첫 프레임을 위한 배경 계산이 완료되면, 다음 이미지의 배경 계산은 첫 프레임의 배경에 의존한다. 본 논문에서 제시된 방법을 사용할 경우, 추적 물체의 형상 변화가 극심하지 않고, 카메라의 움직임이 매우 빠르지 않을 경우 성공적으로 추적할 수 있었다.
본 논문에서는 향상된 물체 인식을 위한 픽셀 복원 기반의 비선형 3D 상관기를 제안한다. 제안한 방법은 부분적으로 가려진 물체로부터 요소영상을 픽업하고 서브영상으로 변환하고 영역 매칭 알고리즘 방법을 이용하여 서브영상으로부터 장애물로 가려진 영역을 검출하고 제거한다. 그 다음 픽셀 복원 방법으로 각 서브영상에서 제거된 물체의 픽셀을 복원한다. 마지막으로, 재생된 참조영상과 재생된 영상 사이의 비선형 상호상관을 통하여 3D 물체의 인식 성능을 향상 시킨다. 제안된 방법의 유용함을 보이기 위해 기존 방법과 비교하여 기초적인 상관관계 실험을 수행하고 그 결과를 보고한다.
본 논문은 저해상도와 많은 노이즈를 갖는 일반 CCTV의 입력 영상에서 실시간으로 움직이는 물체를 검출하고 그 물체의 움직임을 추적하는 방법을 제안 한다. 본 논문은 CCTV영상으로부터의 입력 영상을 순차를 갖는 명암도 영상으로 실시간 변환 하여 진행 한다. 움직이는 물체의 추출은 첫째, 획득한 영상의 그레이 영상을 포스터라이징을 이용하여 명암 분포를 축소하고 차영상을 통해 윤곽을 추출한다. 둘째, 본 논문이 제안하는 영역 단위 이진화를 통해 이진화와 잡음의 제거를 동시에 수행한다. 셋째, 손실된 정보의 보정을 위해 이진 영상의 팽창을 수행한다. 넷째, 이진 영상의 가로/세로 명암 밀도 분포를 통해 움직이는 물체 영역을 검출한다. 검출된 물체의 추적은 현 재 프레임의 물체 영역과 이전 프레임의 물체 영역의 중심을 계산한 후, 두 중심의 거리 차를 계산한다. 계산된 거리가 임계값보다 작을 경우 같은 물체로 인식하고 계속 추적하며, 임계값 이상의 값일 경우 새로운 물체로 인식한다. 추적된 이동물체의 중심점이 화면의 중앙 부분에 있지 않을 경우, 이동물체의 중심으로 카메라의 방향을 조정한다. 실험결과, 제안한 방법으로 저해상도와 많은 노이즈를 갖는 일반 CCTV 의 입력 영상에서도 실시간으로 움직이는 물체를 검출하고, 그 물체의 움직임을 추적 할 수 있었다.
본 논문에서는 비디오 데이터로부터 물체의 초기 움직임 영역을 자동으로 검출하는 방법을 소개한다. 제안하는 시스템은 먼저 입력 영상을 받아들인 후 인접된 영상으로부터 일정 크기의 정방향의 블록 단위로 움직임을 나타내는 모션 벡터를 추출한다. 그리고 추출된 모션벡터를 아웃라이어를 제거하는 강건 예측 알고리즘에 적용하여 배경에 해당하는 모션벡터와 잡음 및 움직이는 물체에 해당하는 모션벡터를 구분한다. 그런 다음, 군집화 알고리즘을 적용하여 이동하는 물체를 나타내는 모션벡터를 군집화하고, 군집화된 모션벡터에 해당하는 영역의 크기가 일정 수치 값 이상일 때 움직이는 물체가 감지되었다고 판단한다. 본 논문의 실험에서는 제안된 물체의 움직임 감지 방법이 기존의 방법에 비해 성능이 보다 우수함을 보인다.
내용을 기반으로 하는 영상검색에 있어 색상과 물체의 특징은 중요한 요소로서, 지금까지의 검색 기법들은 이들을 중심으로 연구가 진행되어 왔으며, 이들을 추출하기 위해서는 color 영상에서의 배경과 물체의 분리는 선행되어야 할 중요한 과제이다. color 영상에서 물체를 분리 하고자 하는 여러 가지 시도가 있었으나, 대부분 clustering 에 준하고 있으며, 처리시간이나 결과에 있어서 그다지 좋은 효과를 내지 못하는 것도 사실이다. 따라서, 영상검색을 위한 물체의 분리 기법으로서는 적합하지 않다. 본 논문에서는 물체가 영상의 중심에 주로 위치한다는 점에 착안한 방법을 응용하여 영상의 외곽에 존재하는 색상뿐만 아니라 명암까지 분석하여, 배경을 구성하는 화소들의 색상 및 명암과 동일하지 않은 색상들로 이루어진 부분을 물체로 판단, 추출하는 기법에 대해 설명하고, edge를 추출해낸 영상의 정보와 합성하여 최적의 물체를 찾아 검색을 하는 기법에 대하여 기술하였다.
우리는 동영상에서 낮은 연산량으로 강인하게 움직이는 물체를 탐지하는 방법을 제안한다. 동영상에서 움직이는 물체를 탐지하기 위한 많은 방법들이 제안되었는데, 각각의 방법은 접근 방법에 따라 탐지 성능과 처리속도에 trade-off가 존재한다. 최근 폭넓게 사용되고 있는 가우시안 혼합모델을 이용한 배경모델생성 법의 경우 탐지성능은 우수하나 연산량이 많고, 차영상(Temporal difference)을 이용한 방법은 연산량은 적으나 노이즈에 민감하게 반응한다. 또한 알고리즘 특성상 탐지된 물체에 Hole과 Ghost가 발생하는 문제가 있다. 우리는 이러한 단점들을 극복하기 위해 이 두 가지 알고리즘을 효율적으로 결합하여 움직이는 물체를 탐지하였다. 실험은 사람, 차, 오토바이와 같이 실외환경에서 흔히 움직이는 물체로 탐지되는 요소들이 다양한 환경에서 실시하였으며, 실험한 결과 배경영역에서 발생하는 노이즈는 효과적으로 제거하면서 움직이는 물체를 탐지하였다.
레이더 영상에서의 물체 위치는 극좌표계로 주어지기 때문에 직각좌표계로 표현되는 일반적인 물체 추적에서의 클러스터링을 통한 물체 추출 방법은 비효율적이다. 본 논문에서는 이러한 레이더 영상의 특성을 고려하여 개선된 ART2클러스터링 기법을 이용하는 방법을 제안하였다. 이진화와 labeling을 통해 추적하고자 하는 물체 외의 물체나 잡영을 제거한 영상에서의 adaptive vigilance parameter를 이용한 ART2 클러스터링 기법의 적용은 추적하고자 하는 물체를 추출함에 있어 우수한 실험 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.