• Title/Summary/Keyword: 물체 운동

Search Result 318, Processing Time 0.027 seconds

A Study on the Radiation Forces Acting on a Submerged-Plate (몰수평판에 작용하는 Radiation 유체력에 관한 연구)

  • Lee, Sang-Min;Kong, Gil-Young;Kim, Chol-Seong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.199-205
    • /
    • 2004
  • We have developed a composite grid method for the solution of the radiation problem We divide the domain into two different grids; one is a moving grid system and the other is a fixed grid system. This numerical method is applied to calculation of the radiation forces generated by the submerged plate oscillating near a free surface. The experimental data are compared with the numerical ones obtained by the present method and a linear potential theory. As a result, we can confirm the accuracy of the present method. Finally, Lie have evaluated the effect of nonlinear and viscous damping on the hydrodynamic forces acting on the submerged plate.

Artifact Correction due to 3-D Rigid Motion in MRI (MRI에 있어서 3차원 강체운동에 기인한 아티팩트의 수정)

  • 김응규;이충호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.251-254
    • /
    • 2004
  • 환자의 체동은 MRl에 의해 제공된 화질을 저하시키는 주된 원인이 되고 있다. 본 연구에서는 MRI에 있어서 3차원 강체운동에 기인한 아티팩트를 수정하는 기법을 제안한다. 이러한 목표를 달성하기위해 MR 화상 데이터를 얻기위한 2차원 다-슬라이스 기법(a multiple 2-D slice technique)이 사용되어왔다. 대상물체의 운동에 해당하는 수집된 MRI 데이터는 불균일 표본화와 위상오차에 의해 영향을 받게된다. 3차원 운동에 대해 주어진 운동 파라메타와 장면간의 영향이라는 가정하에 양선형보간법과 중첩법으로 다-슬라이스 데이터를 사용하는 방법에 기반한 재구성 알고리즘을 MRI 아티팩트를 수정하는데 사용한다. 미지의 체동 파라메타들을 추정하기위해 3차원 강체운동은 다-슬라이스 취득기법의 각 영상과 결합된 관심영역 바깥쪽에서의 측정된 에너지를 증가시킨다는 사실을 이용하는 최소에너지법을 적용한다.

  • PDF

The effect of art expertise and awareness of artists' intention on the patterns of eye movement during perception of abstract paintings with implied motion (미술에 대한 전문성과 화가의 표현 의도에 관한 자각이 운동성을 묘사한 추상화 지각 시 안구 운동 패턴에 미치는 영향)

  • Kim, Ji-Eun;Shin, Eun-Hye;Kim, Chai-Youn
    • Korean Journal of Cognitive Science
    • /
    • v.25 no.3
    • /
    • pp.259-276
    • /
    • 2014
  • Artists such as Duchamp and Balla tried to portray moving objects on static canvases by superimposing snapshots of moving objects. Previously, our group showed the influence of prior experience on brain responses within a motion-sensitive area MT+ to abstr act paintings with or without implied motion. In the present study, we went further to investigate whether the differential MT+activation between observers is originated from differential eye movement patterns. Prior experience was defined operationally with major in art. In addition, we examined whether perceiver's awareness of artist's intention concerning the implied motion, as well as expertise in art, affects the way he/she views the artwork. Results showed that the number and the duration of fixation on the abstract paintings tended to differ between participants based on art major. The awareness of artist's intention was not related to such differences. In contrast, observers' awareness of artist's intention of implying motion affected eye movement patterns in specific regions of the abstract paintings where the motion was portrayed. In other words, observers with awareness focused more on the parts of paintings portraying motion and moved their eyes in the direction corresponding to the direction of moving objects than observers without awareness. Expertise was not related to such specific eye movement patterns. The present study implies that art expertise and awareness of artist's intention play differential roles in observers' perception of paintings with implied motion. Namely, it suggests that expertise is related to the overall perception of paintings, while awareness of implied motion is related to perception of the specific spatial information in those paintings.

Comparative Study on DAE Solution Methods for Effective Multi-Body Dynamics Analysis of Unmanned Military Robot Based on Subsystem Synthesis Method (무인 국방 로봇의 효과적인 다물체 동역학 해석을 위한 부분시스템 합성방법 기반 DAE 해석 기법 비교 연구)

  • Kim, Myoung Ho;Kim, Sung-Soo;Yun, Hong-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1069-1075
    • /
    • 2013
  • An effective method is necessary for the real-time analysis of an unmanned military robot. To achieve highly efficient simulations, a subsystem synthesis method has been developed. The subsystem synthesis method separately generates equations of motion for the base body and for the subsystem. The equations of motion are expressed by DAE, which consist of differential equations and algebraic equations. To increase the accuracy and efficiency of solutions, DAE solvers such as the Direct, CS (Constraint Stabilization), and GCP (Generalized Coordinate Partitioning) method are employed. In this study, the subsystem synthesis method is applied for effective multi-body dynamics analysis of an unmanned military robot, and a comparative study of three different DAE solvers is carried out.

Development of an Unstructured Parallel Overset Mesh Technique for Unsteady Flow Simulations around bodies with Relative Motion (상대운동이 있는 물체주위의 비정상 유동해석을 위한 병렬화된 비정렬 중첩격자기법 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.1-10
    • /
    • 2005
  • An unstructured parallel overset mesh method has been developed for the simulation of unsteady flows around multiple bodies in relative motion. For this purpose, an efficient and robust search method is proposed for the unstructured grid system. A new data-structure is also proposed to handle the variable number of data on parallel sub-domain boundary. The interpolation boundary is defined for data communication between grid systems. An interpolation method to retain second-order spatial accuracy and to treat the points inside the neighboring solid bodies are also suggested. A single store separating from the Eglin/Pylon configuration is calculated and the result is compared with experimental data for validation. Simulation of unsteady flows around multiple bodies in relative motion is also performed.

Correction of Rotated Frames in Video Sequences Using Modified Mojette Transform (변형된 모젯 변환을 이용한 동영상에서의 회전 프레임 보정)

  • Kim, Ji-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.42-49
    • /
    • 2013
  • The camera motion is accompanied with the translation and/or the rotation of objects in frames of a video sequence. An unnecessary rotation of objects declines the quality of the moving pictures and in addition is a primary cause of the viewers' fatigue. In this paper, a novel method for correcting rotated frames in video sequences is presented, where the modified Mojette transform is applied to the motion-compensated area in each frame. The Mojette transform is one of discrete Radon transforms, and is modified for correcting the rotated frames as follows. First, the bin values in the Mojette transform are determined by using pixels on the projection line and the interpolation of pixels adjacent to the line. Second, the bin values are calculated only at some area determined by the motion estimation between current and reference frames. Finally, only one bin at each projection is computed for reducing the amount of the calculation in the Mojette transform. Through the simulation carried out on various test video sequences, it is shown that the proposed scheme has good performance for correcting the rotation of frames in moving pictures.

Development of a Moving Body Type Wave Power Generator using Wave Horizontal Motions and Hydraulic Experiment for Electric Power Production (파의 수평운동을 이용한 가동물체형 파력발전장치의 개발과 전력생산에 관한 수리실험)

  • Hwang, Seong Su;Lee, Dong Soo;Yang, Kyong Uk;Byun, Jung Hwan;Park, Il Heum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • To reduce the mechanical energy loss and to get the high energy efficiency, an apparatus of wave power generation inducing a consistent one way rotating motion from the wave reciprocation motions was developed and the hydraulic experiments for the real electric power production were conducted and the results were discussed. In the experiments for the shape of the buoyant tank, the efficiency of the fixed 9 cm diameter type enduring the wave plate weight was 14.6% and this was the best result for all shapes. But although the free sliding type was expected to represent a high efficiency, the experiments did not show a good result as 8.5% efficiency. Therefore, the shape of buoyant tank was decided as the fixed 9 cm diameter type in the next all tests. In the experiments for the various incident waves, when the water depth was 90 cm, the average efficiencies were measured as 3.9% in the 2nd gear, 4.9% in the 3rd gear, 4.9% in the 4th gear, 12.0% in the 5th gear, 10.0% in the 6th gear, 3.1% in the 7th gear, and 3.0% in the 8th gear. Also, when the water depth was 80 cm, the average efficiency was shown as 15.0% with 5th gear condition. Therefore the high average efficiency as 13.5% was given with 80~90 cm water depth and the 5th gear in the model.

Dynamic Modeling and Simulation of a Towing Rope using Multiple Finite Element Method (다물체 요소이론을 이용한 예인줄 동역학의 모델링 및 시뮬레이션)

  • Yoon, Hyeon-Kyu;Lee, Hong-Seok;Park, Jong-Kyu;Kim, Yeon-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.339-347
    • /
    • 2012
  • After towing rope connecting a barge to a tug was subdivided into multiple finite elements, then those dynamic models was established using Newton's second law and considering the external force and moment such as tension, drag, Coriolis force, gravity, buoyancy, and impact due to free surface acting on each element. While the previous research on the model of towing rope considered only translation, five-degree-of-freedom equations of motion except roll based on the body-fixed frame were established in this paper. All elements are connected by a spring and a damper, and the stiffness of the spring was set as the equivalent value of the real rope. In order to confirm the established multiple finite element model, various scenarios such as freely falling of towing rope in the air and above the free surface, accelerating of a tug which tows a barge connected by towing rope, and sinusoidal moving of a tug were set up and simulated. As the results, the trajectories of the tug, the barge, and the towing rope showed good tendencies to the ones of real expected situations.

The Effects of Object Size and Reaching Distance on Upper Extremity Movement (물체 크기와 뻗기 거리가 상지 움직임에 미치는 영향)

  • Bae, Su-Young;Kim, Tae-Hoon
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.10 no.1
    • /
    • pp.51-61
    • /
    • 2020
  • Objectives : The purpose of this study is to investigate the effect of object size and reaching distance on kinematic factors of the upper limb while performing arm reaching for normal subjects. Methods : The subjects of this study were 30 university students who were in D university in Busan, and the measuring tool was CMS-70P(Zebris Medizintechnik Gmbh, Germany), a three-dimensional motion analyzer. The task had six conditions. The average velocity of motion, average acceleration, maximum velocity, and the velocity definite number of movements were measured according to changes in object size(2cm, 10cm) and reaching distance(15%, 37.5%, 60%) when they performed arm reaching. The general characteristics of the subject were technical statistics. One-way ANOVA measurement was used to compare variables when the arm reaching task was performed from two object sizes to three reaching distance, and the post-test was conducted with Tukey test. In addition, an independent t-test was used to analyze the kinematic differences according to the two object sizes at three reaching distances. A two-way ANOVA measurement (3×2 Two-way ANOVA measurement) was performed to identify the interaction of the reaching distance(15%, 37.5%, 60%) and the object size(2cm, 10cm). The statistical significance level α was set to .05. Results : When the size of the object increased, the velocity and maximum velocity also increased, but the definite number of velocity decreased. When the reaching distance increased, the velocity and maximum velocity increased, whereas the definite number of velocity decreased. Conclusion : The clinical significance of this study could be utilized as the baseline data for grading object size and reaching distances when the reaching training is implemented for patients whose central nervous system was damaged.

Rigid Body Dynamic Analysis on the Spent Nuclear Fuel Disposal Canister under Accidental Drop and Impact to the Ground: Theory (사고로 지면으로 추락낙하 충돌하는 고준위폐기물 처분용기에 대한 기구동역학 해석: 이론)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.359-371
    • /
    • 2013
  • This paper is the first paper among two papers which constitute the paper about the rigid body dynamic analysis on the spent nuclear disposal canister under accidental drop and impact on to the ground. This paper performed the general theoretical study on the rigid body dynamic analysis. Through this study the impulsive force which is occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground and required for the structural safety design of the canister is intended to be theoretically formulated. The main content of the theoretical study is about the equation of motion in the multibody dynamics. On the basis of this study the impulsive force which is occurring in the multibody in the case of collision between multibody is theoretically formulated. The application of this theoretically formulated impulsive force to computing the impulsive force occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground is investigated.