• Title/Summary/Keyword: 물체표면조건

Search Result 65, Processing Time 0.027 seconds

A Study of Numerical Method for Analysis of the 3-Dimensional Nonlinear Wave-Making Problems (3차원 비선형 조파문제 해석을 위한 수치해법 연구)

  • Ha, Y.R.;An, N.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • For free surface flow problem, a high-order spectral/boundary element method is adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. Using the combination of these two methods, the free surface flow problems of a submerged moving body are solved in time domain. In the present study, lifting surface theory is added to the former work to include effects of lift force. Therefore, a new formulation for the basic mathematical theory is introduced to contain the lift body in calculation.

Volume Mesh Parameterization for Topological Solid Sphere Models (구형 위상구조 모델에 대한 볼륨메쉬 파라메터화)

  • Kim, Jun-Ho;Lee, Yun-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.106-114
    • /
    • 2010
  • Mesh parameterization is the process of finding one-to-one mapping between an input mesh and a parametric domain. It has been considered as a fundamental tool for digital geometric processing which is required to develop several applications of digital geometries. In this paper, we propose a novel 3D volume parameterization by means that a harmonic mapping is established between a 3D volume mesh and a unit solid cube. To do that, we firstly partition the boundary of the given 3D volume mesh into the six different rectangular patches whose adjacencies are topologically identical to those of a surface cube. Based on the partitioning result, we compute the boundary condition as a precondition for computing a volume mesh parameterization. Finally, the volume mesh parameterization with a low-distortion can be accomplished by performing a harmonic mapping, which minimizes the harmonic energy, with satisfying the boundary condition. Experimental results show that our method is efficient enough to compute 3D volume mesh parameterization for several models, each of whose topology is identical to a solid sphere.

Theoretical Analysis of Open Water Characteristics of a Rudder (타 단독 특성의 이론적 해석)

  • I.Y. Gong;C.G. Kang;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.29-42
    • /
    • 1992
  • A potential based panel method is used to predict the open water characteristics of spade-type rudders. The inflow velocity is assumed to be constant in lime and uniform in space. Source and dipole are distributed on the rudder surface. It is assumed that the wake surface is streaming from trailing edge and it is represented by dipole distribution. In this paper, wake geometry is assumed by imposing appropriate conditions at the trailing edge and far from the body. The effects of wake geometry are studied. The pressure Kutta condition is applied at the trailing edge, the effects of which are compared with those of two-dimensional Kutta condition. The results of calculations for a spade-type rudder are compared with published results. It is concluded that this approach shows fairly good agreement with experimental results and can be used in the initial design stage of a rudder.

  • PDF

Numerical Analysis of Two-Dimensional Nonlinear Radiation Problem Using Higher-Order Boundary Element Method (고차경계요소법을 이용한 2차원 비선형 방사문제의 수치해석)

  • Hong-G. Sung;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-81
    • /
    • 2000
  • An accurate and efficient numerical method for two-dimensional nonlinear radiation problem has been developed. The wave motion due to a moving body is described by the assumption of ideal fluid flow, and the governing Laplace equation can be effectively solved by the higher-order boundary element method with the help of the GMRES (Generalized Minimal RESidual) algorithm. The intersection or corner problem is resolved by utilizing the so-called discontinuous elements. The implicit trapezoidal rule is used in updating solutions at new time steps by considering stability and accuracy. Traveling waves caused by the oscillating body are absorbed downstream by the damping zone technique. It is demonstrated that the present method for time marching and radiation condition works efficiently for nonlinear radiation problem. To avoid the numerical instability enhanced by the local gathering of grid points, the regriding technique is employed so that all the grids on the free surface may be distributed with an equal distance. This makes it possible to reduce time interval and improve numerical stability. Special attention is paid to the local flow around the body during time integration. The nonlinear radiation force is calculated by the "acceleration potential technique". Present results show good agreement with other numerical computations and experiments.

  • PDF

Hierarchical Height Reconstruction of Object from Shading Using Genetic Algorithm (유전자 알고리즘을 이용한 영상으로부터의 물체높이의 계층적 재구성)

  • Ahn, Eun-Young;Cho, Hyung-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3703-3709
    • /
    • 1999
  • We propose a new approach to reconstruct the surface shape of an object from a shaded image. We use genetic algorithm instead of gradient descent algorithm which is apt to take to local minima and also proposes genetic representation and suitable genetic operators for manipulating 2-D image. And for more effective execution, we suggest hierarchical process to reconstruct minutely the surface of an object after coarse and global reconstruction. A modified Lambertian illumination model including the distance factor was herein adopted to get more reasonable result and an experiment was performed with synthesized and real images to demonstrate the devised method, of which results show the usefulness of our method.

  • PDF

A Potential-Based Panel Method for the Analysis of Resistance Characteristics of a High Speed Catamaran (포텐셜기저 패널법에 의한 고속쌍동선의 저항성능 해석)

  • Kim, Y.G.;Rhyu, S.S.;Yoo, J.H.;Lew, J.M.;Hong, S.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.12-20
    • /
    • 1997
  • A potential-based panel method has been developed to investigate the resistance characteristics of a high speed catamaran advancing on the free surface. Normal dipoles and sources are distributed on the body surface while sources are distributed on the free surface. Linearised free surface conditions are used in the present analysis. To avoid the instabilities due to the velocity difference between inner and outer flow of a high speed catamaran, Kutta condition has been applied at the stern. Model test has been carried out not only to validate the numerical results but to confirm the capabilities of a CWC(Circulating Water Channel). It is believed that we can obtain the qualitatively reasonable results in the CWC. Computed results are compared with those of experiments and Insel's experimental values. Since the Kutta condition is applied at the stern, stable solutions are obtained at the high speed range. The present method, using linearised free surface conditions at the high speed range, seems to be a useful tool in the hull form design of a high speed catamaran.

  • PDF

Free Surface Analysis in Pipe Flows using the ALE Method (ALE를 이용한 관내 유동의 자유경계면 해석)

  • You, Jung-Doo;Tak, Moon-Ho;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.748-751
    • /
    • 2011
  • 일반적으로 물체의 거동을 해석하기 위해 고체영역에서는 Lagrangian 기법이 유체영역에서는 Eulerian 기법이 수치해석에 적용된다. Lagranian 기법은 서로 다른 물질의 경계와 자유표면에 대한 거동을 쉽게 추적할 수 있는 반면 물체의 대변형시 해석의 정확성이 떨어지는 단점이 있다. 또한 Eulerian 기법은 물질이동만을 고려하여 변형의 제한이 없는 장점을 가지고 있지만 이동하는 경계에 대해서 조건을 변화 시켜야하는 어려움이 있다. 따라서 이 두기법의 장단점을 서로 보안하기 위해 ALE(Arbitrary Lagrangian Eulerian)기법이 제안되었으며 이를 적용한 유체-구조물의 상호작용 해석에 대하여 많은 연구가 진행되고 있다. 본 논문에서는 이러한 ALE기법을 이용한 자유경계면에 대한 새로운 알고리즘이 제안된다.

  • PDF

Comparative Study of the Flight Test Data and the Prediction Results of PLF Temperature of KSLV-I Using CFD (전산유동해석 기법을 이용한 KSLV-I PLF 구조물 온도 해석 및 비행시험 자료 비교)

  • Kim, Young-Hoon;Ok, Ho-Nam;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • The temperature of the flight objects in high speed increases due to the aerodynamic heating. MINIVER and CFD approach are used to predict the aerodynamic heating conditions of KSLV-I. MINIVER is based on the empirical method. And the CFD approach predicts the aerodynamic heating conditions after the analysis of the surface temperature and the surface heat flux directly. In this study, the aerodynamic heating conditions using CFD approach are considered. The PLF temperature for these aerodynamic heating conditions is compared with the flight test data of KSLV-I.

Experimental and Numerical Studies of the Flowfield around an Axisymmetric Body (축대칭 물체 주위유동의 실험적·수치적 연구)

  • Ahn, Jong-Woo;Song, In-Haeng;Park, Tae-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.9-18
    • /
    • 1997
  • Experimental and numerical studies are carried out to investigate flow characteristics around an axisymmetric body with and without a compound propulsor. The effects of a compound propulsor are investigated as measuring the surface pressure distribution and the velocity profiles using LDV system in the cavitation tunnel of KRISO. The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are also solved using the finite volume method. The standard k-${\varepsilon}$ turbulence model is adopted for turbulence closure. In order to calculate propeller-hull interaction, the induced velocity calculated by lifting surface theory is considered as the boundary condition at the propeller plane. The experimental data obtained in this study can provide a useful database for development and validation of CFD code.

  • PDF

Image based Shading Techniques for Surfaces with Irregular and Complex Textures Formed by Heterogeneous Materials (이종물질에 의해 복잡한 불규칙 무늬가 형성된 물체 표면의 영상 기반 셰이딩 기법)

  • Lee, Joo-Rim;Nam, Yang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper we present a shading technique for realistic rendering of the surfaces with irregular and complex textures using a single photograph. So far, most works have been using many photographs or special photographing equipment to render the surfaces with irregular and complex textures as well as dividing texture regions manually. We present an automatic selection method of the region segmentation techniques according to properties of materials. As our technique produces a reflectance model and the approximated Bidirectional Reflection Distribution Function(BRDF) parameters, it allows the recovery of the photometric properties of diffuse, specular, isotropic or anisotropic textured objects. Also it make it possible to present several synthetic images with novel lighting conditions and views.