• Title/Summary/Keyword: 물질전달 촉진

Search Result 98, Processing Time 0.023 seconds

Development and Performance Tests of the Waste Water Diffusers using Acoustic Resonance and Oscillatory Pulsation (음향공진과 맥진동 현상을 이용한 폐수처리용 산기관 개발 및 성능시험)

  • Hong, Suk-Yoon;Moon, Jong-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.52-58
    • /
    • 1996
  • Using the acoustic resonances and oscillatory pulsations considered as the branch of wave technologies, the concept of the acoustic resonance diffusers for waste water treatment which maximize the oxygen transfer efficiency in gas-liquid two phase medium have been proposed, and studies for the principles and performance tests were accomplished. Besides, the design concepts for the low pressure Helmholtz resonator, cylinder and annular type reflection resonator and combined type resonance system have been implemented. The acoustic resonance energy which can speed up the mass transfer process increase the oxygen transfer efficiency, and periodic pulsations generated from the instability of air jet from nozzle make very small air bubbles. Then, the annular type jet resonator(AJR) applying these two principles successfully was evalulated as the most promising device and also the efficiency showing $20{\sim}30%$ better than conventional diffusers has been verified experimentally.

  • PDF

Promotion of Synaptic Maturation by Deep Seawater in Cultured Rat Hippocampal Neurons (해양심층수의 해마신경세포 연접형성 촉진 효과)

  • Kim, Seong-Ho;Lee, Hyun-Sook;Shon, Yun-Hee;Nam, Kyung-Soo;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1479-1484
    • /
    • 2008
  • Deep seawater (DSW) refers to water extracted from the ocean, usually at depths of 200 meters or more, which is rich in inorganic materials and has attracted attention for various applications. We investigated the effects of the DSW on the synaptic maturation of cultured rat hippocampal neurons. Immunocytochemical examination of DIV21 showed that PSD-95, $\alpha$CaMKII, and synGAP$\alpha1$clusters were strengthened and coupling rates of SV2 and NR2B were significantly increased in neurons grown in the presence of H-800 and H-1000 DSW. Our results indicate that DSW promotes the formation of excitatory postsynaptic signal transduction complexes NRC/MASC and functional synapses.

Studies on the Metabolic Cooperativity between Ooccte and Cumulus Cells in Mammalian Oocyte Cumulus Complexes in vitro (포유동물 난자-난구 복합체의 Metabolic cooperativity)

  • 고선근;나철호;권혁방
    • The Korean Journal of Zoology
    • /
    • v.31 no.2
    • /
    • pp.81-86
    • /
    • 1988
  • The relationship between cumulus cell expansion, cocyte maturation and metabolic cooperativitiy was investigated by using mouse and pig cocyte-cumulus complexes in vitro. Cocyte germinal vesicle breakdown (GVBD) and cumulus expansion were manipulated with hormones or reagents which increase intracellular cAMP leveL Metabolic cooperativity between oocyte and cumulus cells was assessed by determination of the fraction of radiolabelled uridine marker that was transferred from the cumulus mass to the oocyte. Uptake of uddine marker by mouse and pig cumulus mass was increased by about fourfold of basal level with the stimulation of hormones (human choriononic gonadotrophin, HCG; follicle stimulating hormone, FSH) or cyclic AMP sttmulators (3-isobutyl-1-methylxanthine, IBMX; forskolin) during culture. However, the fraction of uridine that was transferred from the cumulus mass to the cocyte (transfer ratio) was gradually decreased during culture, irrespective with the presence of hormones or stimulators. The decrease of the transfer ratio was not correlated with the state of occyte whether they have GV or not, or with the degree of cumulus expansion. In mouse complexes, HCG induced more significant reducton of transfer ratio than other treatments. These results do not support the idea that modulations of metabolic cooperativity between cumulus cells and oocytes are important for the regulation of meiotic resumption in mammals.

  • PDF

Effect of Ultrasonic Irradiation on Ozone Nanobubble Process for Phenol Degradation (페놀 분해를 위한 오존 나노기포 공정에서 초음파 조사의 영향)

  • Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • In this study, we investigated the ozone nanobubble process in which nanobubble and ultrasonic cavitation were applied simultaneously to improve the dissolution and self-decomposition of ozone. To confirm the organic decomposition efficiency of the process, a 200 mm × 200 mm × 300 mm scale reactor was designed and phenol decomposition experiments were conducted. The use of nanobubble was 2.07 times higher than the conventional ozone aeration in the 60 minutes reaction and effectively improved the dissolution efficiency of ozone. Ultrasonic irradiation increased phenol degradation by 36% with nanobubbles, and dissolved ozone concentration was lowered due to the promotion of ozone self-decomposition. The higher the ultrasonic power was, the higher the phenol degradation efficiency. The decomposition efficiency of phenol was the highest at 132 kHz. The ozone nanobubble process showed better decomposition efficiency at high pH like conventional ozone processes but achieved 100% decomposition of phenol after 60 minutes reaction even at neutral conditions. The effect by pH was less than that of the conventional ozone process because of self-decomposition promotion. To confirm the change in bubble properties by ultrasonic irradiation, a Zetasizer was used to measure the bubbles' size and zeta potential analysis. Ultrasonic irradiation reduced the average size of the bubbles by 11% and strengthened the negative charge of the bubble surface, positively affecting the gas transfer of the ozone nanobubble and the efficiency of the radical production.

Effects of Pine Needle Butanol Fraction on Acetylcholine (ACh) and Its Related Enzymes in Brain of Rats (뇌 조직의 아세틸콜린 및 그 관련효소에 미치는 솔잎(Pine Needle) 부탄올획분의 영향)

  • 최진호;김대익;박시향;김남주;백승진;김군자;김현숙
    • Journal of Nutrition and Health
    • /
    • v.37 no.3
    • /
    • pp.176-181
    • /
    • 2004
  • This study was designed to investigate the effects of buthanol (BuOH) fraction of pine (Pinus densiflora Sieb et Zucc) needle on cholesterol and lipofuscin (LF) accumulations, acetylcholine (ACh) and its related enzyme activities such as choline acetyltransferase (CAhT) and acetylcholinesterase (AChE), and monoamone oxidase-B (MAO-B) activity, which destroyed the catecholamine-related neurotransmitters in brain membranes of Sprague-Dawley (SD) rats. Male SD rats were fed basic diets (control group) or experimental diets (BuOH-25, BuOH-50 and BuOH-100) for 45 days. Cholesterol accumulations in mitochondria and microsomes were significantly inhibited (about 14 - 17% and 23 - 34%, respectvely) in BuOH-50 and BuOH-100 groups, whereas LF levels were significantly inhibited (about 10 - 14%) in BuOH-50 and BuOH-100 groups compared with control group. ACh levels and ChAT activities were significantly increased (about 11 - 17% and 11 - 23%, respectively) in membranes of BuOH-50 and BuOH-100 groups compared with control group. AChE activities were significantly increased (about 14 - 17%) in membranes of BuOH-50 and BuOH-100 groups. There was no significant difference in MAO-B activities between control and experimental diet groups. The results suggest that butanol fraction of pine needle may play an effective role in an antiaging effect and improving a learning and memory impairments.

Current Trend of Scalp Care Technology of Microneedle Using Fermented Soybean (대두 발효물을 이용한 마이크로니들 두피케어에 관한 최신 동향)

  • Kim, Eun-Ju;Jung, Hyun-Ki;Kim, Sung-Jun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.4
    • /
    • pp.241-251
    • /
    • 2010
  • In recent years, the number of people suffering from depression due to hair loss has been increasing. The treatment methods such as clinical pathology and vanity surgery have been developed. There are therapies and materials for hair growth promotion and hair loss prevention. But the effectiveness of such therapies and materials is not fully evaluated and some side-effects have been reported. In this study, microneedle therapy using very thin and delicate needles promotes absorption of drug. During this therapy, the microneedle makes micro holes that help absorbion of drugs into the scalp. In this study, absorbion of fermented soybean were evaluated. The ingredient has antioxidant, antiandrogen, and antithrombosis effect for alopecia. The fermented soybean is more effective for complex hair loss when used with microneedle. It is because of the microneedle's excellent drug delivery system (DDS). This therapy that increases the absorption of fermented soybean is a very useful scalp care method which prevents, treats and controls alopecia. This microneedle therapy using fermented soybean is an advanced technology for scalp care.

Effect of Reserpine on Pancreatic Exocrine Secretion Induced by Mesencephalic Reticular Stimulation in Rats (흰쥐에서 Reserpine이 중뇌망상체의 자극으로 유발된 췌장의 외분비 기능에 미치는 영향)

  • Park, Hyoung-Jin;Lee, Yun-Lyul
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.101-109
    • /
    • 1988
  • 최근에 마취한 흰쥐에서 중뇌망상체를 전기적으로 자극하면 췌장의 외분비 기능이 증가하며 이러한 결과는 망상체의 자극으로 인하여 교감신경계의 활성도가 상승하기 때문이라는 보고가 있다. 한편 교감신경계의 활성도가 상승할 경우 교감신경계의 전달 물질인 catecholamine이 교감신경 종말 뿐만 아니라 부신수질에서도 유리된다고 알려져 있다. 그러므로 본 연구에서는 중뇌망상체의 자극으로 인하여 췌장의 외분비 기능이 증가함에 있어 교감신경계가 중요한 역할을 담당하는지를 확인하고, 이때 부신수질이 관여하는가를 알아보고자 하였다. 마취한 흰쥐에게 atropine (1mg/kg) 또는 reserpine (5mg/kg)을 투여하거나 또는 부신을 적출한 다음 중뇌망상체를 전기 자극하면서 췌장액을 채취하였다. 사용한 전기자극의 매개변수는 1.3V, 40Hz, 2msec이었다. atropine과 reserpine을 투여하면 마취한 흰쥐의 자발적 췌장액 분비량과 단백질 분비량은 모두 유의하게 감소하였으나 부신을 제거하면 췌장액 분비량에는 이렇다할 변동이 없는 반면에 단백질 분비량은 유의하게 감소하였다. 중뇌망상체를 전기자극하면 췌장액 분비량과 단백질 분비량 모두가 유의하게 증가하였다. 이러한 망상체의 자극효과는 atropine 전처치에 의하여 이렇다할 영향을 받지 않았으나 reserpine 전처치에 의하여 소실되었다. 그러나 부신을 적출하면 망상체 자극에 의한 췌장액 분비량의 증가는 유지되는 반면에 단백질 분비량의 증가는 소실되었다. 한편 미주신경을 절단한 흰쥐에서 중뇌망상체를 자극하는 동안에 경동맥의 수축기 및 이완기 혈압이 상승하였는데 이러한 망상체의 자극효과도 reserpine의 투여에 의하여 유의하게 감소되었다. 본 실험의 결과를 종합하여 보면 마취한 흰쥐에서 중뇌망상체의 자극은 교감신경계를 활성화시켜 췌장액 분비량과 단백질 분비량에 촉진적인 영향을 미치며, 이때 활성화된 교감신경계는 부분적으로 부신을 경유하게 췌장의 단백질 분비에 촉진적인 영향을 미치는 것으로 생각된다.

  • PDF

Silicon이 wnt signaling pathway에 미치는 영향

  • Byeon, In-Seon;Song, Ho-Yeon;Sarkar, Swapan Kumar;Kim, Yeong-Hui;Park, Min-Ju;Gwak, Gyeong-A;Jyoti, Md. Anirban;Lee, Byeong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.44.2-44.2
    • /
    • 2010
  • 최근 골손상이 있을 경우 골 형성을 유도하고 기능을 부여하여 단순한 골조직의 대체를 위한 지지체가 아닌 한층 더 나아간 지지체의 연구가 활발히 진행되고 있다. 뼈 형성 억제 인자를 억제하거나 촉진인자를 첨가하여 뼈의 형성이 증가시키고, 뼈 형성과정에 관여하는 신호체계를 유도하는 어떤 물질을 첨가하여 뼈의 형성을 증가시킬 수 있다. 줄기세포는 다양한 세포로 분화할 수 있는 능력이 있는데 그 과정에서 여러 가지 signal이 관여한다. 그 중 wnt signaling은 줄기 세포가 분화하는 과정뿐만 아니라 세포의 사멸, 이동에 있어서도 매우 중요한 역할을 하며, 줄기세포의 운명 결정에 영향을 미친다고 알려져 있다. Silicon은 조골세포의 부착과 증식, 세포의 활성을 증가시키며 뼈의 형성과정과 석회화 과정에서 중요한 역할을 한다. 또한 BMP-2, collagen 등과 같은 유전자의 발현을 증가시킨다. 따라서 본 연구에서는 Silicon이 조골세포로의 분화과정에 관여하는 신호전달 중 wnt 신호에 미치는 영향에 대해 유전자의 발현 양상과 단백질의 발현 양상을 살펴보기 위해 각각 RT-PCR과 western-blotting을 수행하였다.

  • PDF

Retinoic Acid Potentiates Nitric Oxide-Induced Dedifferentiation through the ERK Pathway in Rabbit Articular Chondrocytes (Retinoic acid의 ERK 신호전달경로를 통한 nitric oxide 유도 연골세포 탈분화 심화 기작)

  • Yu, Seon-Mi;Kim, Song-Ja
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.534-541
    • /
    • 2011
  • Retinoic acid (RA), a metabolite of vitamin A, is known to regulate dedifferentiation of rabbit articular chondrocytes. The regulatory mechanism of dedifferentiation by RA is not yet understood. Thus, the effect of RA on the regulation of nitric oxide (NO)-induced dedifferentiation was investigated in rabbit articular chondrocytes. RA caused loss of the differentiated chondrocyte phenotype as demonstrated by inhibition of type II collagen expression and proteoglycan synthesis. RA also accelerated NO-induced dedifferentiation in rabbit articular chondrocytes as detected by expression of type II collagen and Sox-9 using Western blot analysis and production of sulfated proteoglycan using Alcain blue staining. Further, RA potentiated NO-induced activation of ERK. Inhibition of ERK with PD98059 (PD) recovered the expression of type II collagen and Sox-9 and production of sulfate proteoglycan in NO-induced dedifferentiated chondrocytes by RA treatment. Our findings suggest that RA accelerates NO-induced dedifferentiation of rabbit articular chondrocytes via the ERK pathway.

The Cross-talk Mechanisms of Constitutive Androstane Receptor (CAR) in the Regulation of its Activity, Energy Metabolism, Cellular Proliferation and Apoptosis (Constitutive Androstane Receptor (CAR)의 활성, 에너지 대사 및 세포의 증식과 사멸의 조절에 대한 CAR의 cross-talk 기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.211-220
    • /
    • 2020
  • The activity of CAR can be regulated not only by ligand binding but also by phosphorylation of regulatory factors involved in extracellular signaling pathways, cross-talk interactions with transcription factors, and the recruitment, degradation, and expression of coactivators and corepressors. This regulation of CAR activity can in turn have effects on the control of diverse physiological homeostasis, including xenobiotic and energy metabolism, cellular proliferation, and apoptosis. CAR is phosphorylated by the ERK1/2 signaling pathway, which causes formation of a complex with Hsp-90 and CCRP, leading to its cytoplasmic retention, whereas phenobarbital inhibits ERK1/2, which causes dephosphorylation of the downstream signaling molecules, leading to the recruitment to CAR of the activated RACK-1/PP2A components for the dephosphorylation, nuclear translocation, and the transcriptional activation of CAR. Activated CAR cross-talks with FoxO1 to induce inhibition of its transcriptional activity and with PGC-1α to induce protein degradation by ubiquitination, resulting in the transcriptional suppression of PEPCK and G6Pase involved in gluconeogenesis. Regulation by CAR of lipid synthesis and oxidation is achieved by its functional cross-talks, respectively, with PPARγ through the degradation of PGC-1α to inhibit expression of the lipogenic genes and with PPARα through either the suppression of CPT-1 expression or the interaction with PGC-1α each to induce tissue-specific inhibition or stimulation of β-oxidation. Whereas CAR stimulates cellular proliferation by suppressing p21 expression through the inhibition of FoxO1 transcriptional activity and inducing cyclin D1 expression, it suppresses apoptosis by inhibiting the activities of MKK7 and JNK-1 through the expression of GADD45B. In conclusion, CAR is involved in the maintenance of homeostasis by regulating not only xenobiotic metabolism but also energy metabolism, cellular proliferation, and apoptosis through diverse cross-talk interactions with extracellular signaling pathways and intracellular regulatory factors.