• Title/Summary/Keyword: 물의 증기압

Search Result 60, Processing Time 0.068 seconds

The Generation of Vacuum Scale Using the Vapour Pressure of Water (물의 증기압을 이용한 진공도눈금의 생성)

  • Seong D. J.;Shin Y. H.;Chung K. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.180-185
    • /
    • 2005
  • The possibility of generation of the vacuum scale using the vapour pressure of water was evaluated. The range of vacuum from 3.3 kPa to 101.3 kPa was corresponds the vapour pressure of water in the temperature range from $25^{\circ}C$ to $100^{\circ}C$ The measured values of the vapour pressure of water were agreed within the deviation of $5\%$ comparing to reference value. This result shows the vapour pressure of water can be used as an secondary reference of the vacuum scale. Moreover it shows the thermo-dynamical properties such as, triple point, temperature-pressure curve of a material have a applicability in the vacuum scale as a reference in corresponding range of vacuum.

Residual Liquid Behavior Calculation for Vacuum Distillation of Multi-component Chloride System (다성분 염화물계 진공 증류의 잔류 액체 거동 계산)

  • Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.179-189
    • /
    • 2014
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. An electrolytic reduction of the pyroprocessing is a process to reduce oxides into metals using LiCl as an electrolyte and requires a post-treatment process due to the inclusion of residual salt in porous metal products. A vacuum distillation has been adopted for various molten salt systems and could be applied to the post-treatment process of the electrolytic reduction. The residual salt in the metal products includes LiCl, alkali chlorides, and alkaline earth chlorides. In this paper, vapor pressures of chlorides have been estimated and the composition changes on the residual liquid during the vacuum distillation process have been calculated. A model combining a material balance and vapor-liquid equilibrium relations has been proposed under a constant vapor discharging flow rate and liquid composition changes have been calculated using the vapor pressures with respect to a dimensionless time. The behaviors have been compared with temperature and molten salt composition changes to simulate the process condition variation. The distillation of the residual salt has been dominated by LiCl which is the main component of the salt and CsCl of which vapor pressure is higher than that of LiCl would be readily removed. RbCl exhibits similar vapor pressure with LiCl and maintains its composition. However, $SrCl_2$ and $BaCl_2$ of which vapor pressures are much lower than that of LiCl are concentrated with time and expected to be possibly precipitated during the distillation when the initial compositions are increased.

투과증발공정의 기초 이론

  • 염충균
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.03a
    • /
    • pp.1-23
    • /
    • 1996
  • 투과증발(Pervaporation)이란 어원적으로 "permeation"과 "evaporation"의 합성어인데 액체혼합물이 치밀한 비다공질막을 통해 이동하는 동안 증기화되면서 분리되는 막분리 공정이다. 이 공정에서 막 한쪽면은 액체공급액과 접하고 있고 다른 한쪽면은 낮은 투과물의 증기압과 접하고 있는데 낮은 증기압은 진공(vacuum pervaporation)을 가하거나 혹은 불활성의 담체가스(sweep gas pervaporation)를 흐르게 하므로써 얻을 수 있다. 이때 막 내부에 트과증발막공정의 추진력인 화학 포텐셜(chemical potential) 구배가 발생하여 막을 통한 물질투과가 이루어지는데 각 투과성분의 투과속도는 투과성분과 막재료간의 물리화학적 인력에 의해 결정된다.의 물리화학적 인력에 의해 결정된다.

  • PDF

과냉각수에 분사된 증기제트의 응축특성에 관한 실험

  • Cho, Seok;Kim, Hwan-Yeol;Song, Cheol-Hwa;Bae, Yun-Young;Jeong, Mun-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.571-576
    • /
    • 1998
  • 고온의 증기가 과냉각 상태의 물과 직접접촉에 의해 발생하는 응축현상(DCC Direct Contact Condensation)을 실험적으로 고찰하였다. 본 연구는 두단계로 나누어 수행하였다. 1단계 연구에서는 간단한 원형관 형태의 수평 노즐을 통하여 증기제트가 대기압 상태의 과냉각수로 분출될 때 증기제트 및 주위의 거동을 측정·분석하였다. 수조의 온도와 증기유량의 변화에 따른 증기제트의 축방향과 반경방향 온도분포와 수조 벽면에서의 동압을 측정하였으며, 고속 비디오 카메라를 사용하여 각각의 경우에 대하여 증기제트의 분출이미지를 촬영하였다. 벽면에서의 동압은 노즐의 분출구직경과 응축수의 온도에 비례하여 증가하였다. 2단계 연구에서는 몇가지 형태의 증기분사기 축소 모형에 대한 응축성능을 비교하였다. 이때에는 수조의 온도상승으로 인해 수조가 가압되는 정도를 알아보기 위해 수조를 밀봉한 상태로 실험을 수행하였다. 실험시 수조의 압력은 시간의 경과에 따라 계속적으로 증가하였으나, 이는 방출된 증기의 불완전한 응축에 의한 것은 아니고 증기의 분출과 응축으로 인한 응축수의 부피팽창과 수조 온도의 상승으로 인한 증기압의 상승 때문인 것으로 판단된다.

  • PDF

Study on Physicochemical Properties of Pesticides. (II) Water Solubility, Hydrolysis, Vapor Pressure, and Octanol/water Partition Coefficient of Flupyrazofos (농약의 물리화학적 특성 연구 (II) Flupyrazofos의 수용성, 가수분해, 증기압, 옥탄올/물 분배계수)

  • Kim, Jeong-Han;Kim, Yong-Hwa;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.76-79
    • /
    • 1997
  • Several physicochemical properties such as water solubility, vapor pressure, hydrolysis and octanol/water partition coefficient(Kow) of flupyrazofos, the first organophosphorus insecticide developed in Korea, were measured based on EPA and OECD methods. Water solubility was low showing 0.80 ppm at $25^{\circ}C$ and in hydrolysis study, half-life at $25^{\circ}C$ was 266.5 hr(pH 4.0), 180.0 hr(pH 7.0) and 120.9 hr(pH 9.0) demonstrating instability in alkaline solution. At $40^{\circ}C$ hydrolysis rate was $2{\sim}4$ times higher than that at $25^{\circ}C$. The equation log P=0.673-(1565.4/T) was obtained from vapor pressure experiments at three different temperatures (25, 35, $45^{\circ}C$) and $2.81{\times}10^{-5}$ torr was obtained at $25^{\circ}C$. This value is similar to that of diazinon and 1,000 times lower than that of DDVP suggesting it would not give environmental contamination by volatilization. High log Kow(5.24) was observed and this might result in bioconcentration through food chain. However, its possibility is not likely to be high due to its relatively rapid hydrolysis.

  • PDF

Molecular Interaction of Dimethylsulfoxide with Water and Alkanols : A Vapor Pressure Osmometry Study (디메틸술폭시드와 물 및 알칸올과의 분자 상호작용 : 증기압 삼투법에 의한 연구)

  • Eung-Gyun Kim;Yongseog Chung;Young-Kook Shin
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.753-756
    • /
    • 1993
  • Studies on the molecular interactions of dimethylsulfoxide (DMSO) with water and/or some alkanols were carried out by vapor pressure osmometry at 40$^{\circ}C$. Negative deviation from Raoult's law was observed for the DMSO-water, methanol, ethanol, 1-propanol, 2-propanol, and 2-methyl-1-propanol systems, whereas positive deviation from Raoult's law was observed for the DMSO-1-butanol and 1-pentanol systems. The results were interpreted in terms of molecular interactions between unlike molecules, and of self-association of DMSO molecules, respectively. Measured chemical shift of hydroxyl proton of the solvents also supported the results.

  • PDF

Study on Physicochemical Properties of Pesticide. (I) Water Solubility, Hydrolysis, Vapor Pressure, and n-Octanol/water Partition Coefficient of Captafol (농약의 물리화학적 특성연구 (I) Captafol의 수용성, 가수분해, 증기압, 옥탄올/물 분배계수)

  • Kim, Jeong-Han;Lee, Sung-Kyu;Kim, Yong-Hwa;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.71-75
    • /
    • 1997
  • Important physicochemical properties of captafol [N-(1,1,2,2-tetrachloro-ethylthio)cyclohex-4-ene-1,2-dicarboximide], water solubility, vapor pressure, hydrolysis and octanol/water partition coefficient(Kow) were measured based on the standard EPA and OECD methods. Water solubility of the chemical was 2.24 ppm at $25^{\circ}C$. Half-life by hydrolysis at $25^{\circ}C$ in the buffer solution of pH 3.0, pH 7.0, and pH 8.0 was 77.8 hr, 6.54 hr and 0.72 hr, respectively, demonstrating instability in alkaline solution. The half-life in acid condition was not significantly different by temperature change, however, that in neutral or alkaline solution became shorter at $40^{\circ}C$. Hydrolysis study with a reference compound, diazinon, proved that the experimental method of the present study is reliable. Vapor pressure of captafol, $8.27{\times}10^{-9}$ torr at $20^{\circ}C$, was calculated from the equation, log P=6.94-(4401.6/T) plotted on the experiment results under different temperature conditions, 40, 50, and $60^{\circ}C$. pressure of captafol, the contamination of captafol would not happen easily in environment by vaporization. High Kow value of 1,523 was observed and this might result in bioconcentration through food chain when captafol was exposed. However, affecting human health through aquatic bioaccumulation is not likely to occur due to its rapid hydrolysis in the environment.

  • PDF