• Title/Summary/Keyword: 물순환 특성

Search Result 815, Processing Time 0.025 seconds

Development of Low-activation Cement for Decreasing the Activated Waste in Nuclear Power Plant (원전 방사화 폐기물 저감을 위한 저방사화 시멘트의 개발)

  • Lee, Binna;Lee, Jong-Suk;Min, Jiyoung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.223-229
    • /
    • 2017
  • When concrete is exposed to neutron rays for a long time, the concrete tends to become activated. If activated, it is classified as middle or low level radioactive waste. However, the great amount of the activated concrete is hard to dispose. In this study, low-activation cement was developed for decreasing the activated waste from shielding concrete around nuclear reactor. Furthermore, the manufactured low-activation was analyzed with activation nuclide Eu, Co. The low-activation cement showed great advantage for low-activation with detecting none of Eu and 3.75ppm of Co while ordinary portland cement showed 0.4~0.9ppm of Eu, 5.5~19.8ppm of Co content. As the results of physical properties of the low-activation cement, it is similar to type 1 ordinary portland cement and accords with type 4 low heat portland cement. Meanwhile, as for the chemical properties of the cement, it accords wite type 1 and 4 at the same time.

Fundamental Evaluation and Hydration Heat Analysis of Low Heat Concrete with Premixed Cement (저발열형 Premixed Cement를 사용한 콘크리트의 기초물성 평가 및 수화열 해석에 관한 연구)

  • Yoon, Ji-Hyun;Jeon, Joong-Kyu;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump, compressive strength and dry shrinkage according to concrete with premixed cement, ternary concrete and OPC concrete for using concrete with premixed cement. The results of experiment are founded that concrete with premixed cement have sufficient performances such as workability, compressive strength and dry shrinkage. Also, the results of hydration heat analysis are founded that concrete with premixed cement have more performance than ternary concrete and OPC concrete at a point of view for the quality control such as thermal crack reducing and economic benefit. Therefore, it is desirable that concrete with premixed cement should be used to rise durability performance and convenience of maintenance.

Property Analysis of Waterproofing and Corrosion-Resistant Performance in Concrete Water Supply Facilities (상수도시설 콘크리트 수조구조물에서의 염화이온 침투저항 특성분석)

  • Kwak, Kyu-Sung;Ma, Seung-Jae;Choi, Sung-Min;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.122-131
    • /
    • 2015
  • The purpose of this study is to understand the necessity for waterproofing and corrosion-resistant technique application on concrete water tank used in water supply. Relevant research materials and regulation were collected, reviewing for the case studies of sample structures aged over 20 years, and experimental studies on chloride conduction for the high performance concrete and penetration properties of water repellency of liquid type materials. The result is that the concrete water tank in the water supply is needed for waterproofing and corrosion-resistant material coating to maintain long term durability due to the constant environmentally induced degradation deterioration often caused by chloride attack.

Microstructure and Strength Characteristic of Hydropobic Cement Mortar with Silan Admixture (실란계 혼화제가 혼입된 소수성 시멘트 모르타르의 미세구조 및 강도특성)

  • Kim, Younghwan;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.127-134
    • /
    • 2021
  • A hydrophobic emulsion consisting of PMHS and PVA was mixed into a cement mortar to observe changes in cement hydrate and microstructure, and to experimentally evaluate compressive strength and flexural strength. The hydrophobic emulsion was added with metakaolin and PVA fibers, and the stirring speed and sequence were adjusted to prepare a shell-concept hydrophobic emulsion. It was then mixed when mixing mortar to enhance filling of the internal pores and change of the hydrates. It was observed that the mortar mixed with a hydrophobic emulsion was filled with micropores and a coating film was formed on the surface of the hydrates by the emulsion. It was analyzed that the total pore area and porosity of the mortar mixed with the emulsion decreased from 30% to 60% compared to OPC, excluding the 50MK variable, which was extremely reduced and the median pore diameter decreased in some variables. It was also found that the compressive strength of the mortar mixed with emulsion 1% was increased up to 20%, but the strength of the mortar specimen mixed with 2% decreased to 50%.

Prediction of Percolation Threshold for Electrical Conductivity of CNT-Reinforced Cement Paste (CNT 보강 시멘트 페이스트의 전기전도에 관한 침투임계점 예측)

  • Lee, Seon Yeol;Kim, Dong Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.235-242
    • /
    • 2022
  • The percolation threshold of the CNT-reinforced cement paste is closely related to the optimal CNT amount to maximize the sensing ability of self-sensing concrete. However, the percolation threshold has various values depending on the cement, CNT, and water-to-cement ratio used. In this study, a percolation simulation model was proposed to predict the percolation threshold of the CNT-reinforced cement paste. The proposed model can simulate the percolation according to the amount of CNT using only the properties of CNT and cement, and for this, the concept of the number of aggregated CNT particles was used. The percolation simulation consists of forming a pre-hydrated cement paste model, random dispersion of CNTs, and percolation investigation. The simulation used CNT-reinforced cement paste with a water-cement ratio of 0.4 to 0.6, and the simulated percolation threshold point showed high accuracy with a simulation residual ratio of up to 7.5 % compared to the literature results.

Mechanical Properties of Slag-Based Cementless Composites According to Types of Polyethylene Fibers (폴리에틸렌 섬유 종류에 따른 고로슬래그 기반 무시멘트 복합재료의 역학특성)

  • Jin, Jeong-Eon;Choi, Jeong-Il;Park, Se-Eon;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.243-251
    • /
    • 2022
  • The purpose of this study is to investigate experimentally the effect of polyethylene fibers with different tensile strength and aspect ratio on the properties of cementless composite. Three types of mixtures according to the types of polyethylene fibers and water-to-binder ratio were prepared and density, compressive strength and tension tests were performed. Test results showed that the mixture reinforced by polyethylene fiber with a low tensile strength by 10 % and a high aspect ratio by 8.3 % had a high tensile strain capacity by 11.7 %, a high toughness by 12.4 %, and a low crack width by 9.1 %. It was also observed that high tensile strain capacity and better cracking pattern could be achieved by increasing the water-to-binder ratio of composite although its strength is low.

Hydration Properties of High-strength Cementitious Composites Incorporating Waste Glass Beads (폐유리발포비드를 혼입한 고강도 시멘트 복합체의 수화 특성)

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Lee, Sang-Soo;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the effect of a sudden decrease in internal humidity and a decrease in hydration level due to the tight internal structure of high-strength concrete and cement composites was investigated. To verify the change in the internal Si hydration, waste glass foam beads were used as a lightweight aggregate, and the internal unreacted hydrate reduction and hydrate formation tendency were identified over the mid- to long-term. Waste glass foam beads were mixed with 5, 10, and 20 %, and were used by pre-wetting. As the mixing rate of the waste glass foamed beads increased, the strength showed a tendency to decrease. In addition, when the mixing amount of pre-wetted waste glass foam beads increases inside through XRD analysis, TGA analysis, and Si NMR analysis, it is judged that the hydration degree of internal Si is different because moisture is supplied to the paste.

Evaluation of Pollutant Removal efficiency for Watershed Scale According to Application of BMPs by Crop Land (유역단위 경작지별 비점오염저감시설 저감 효율 평가)

  • Lee, Gwanjae;Lee, Seoro;Yang, Dongseok;Lee, Jimin;Lim, Kyoung Jae;Jang, Won Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.404-404
    • /
    • 2021
  • 기후변화에 따른 물 순환과정의 변화는 유역내 강우패턴 및 강우강도, 유출 특성에 큰 영향을 미친다. 유역내 강우패턴 및 강우강도 등 물 순환과정의 변화는 강우에 의한 유출과 밀접한 관련이 있는 비점오염원에 중대한 영향을 미친다. 특히, 고랭지밭에 밀집되어 있어 강우에 따른 토사로 인한 탁수가 빈번하게 문제가 되고 있는 소양호 유역은 비점오염원관리지역으로 지정되어 탁수를 저감하기 위해 많은 노력을 기울이고 있는 실정이다. 이러한 노력들 중 환경부에서는 개별 경작지마다 BMPs(Best Management Practices)를 적용하여 강우에 의한 탁수를 저감하고자 하였으며, 앞으로도 지속적으로 설치할 계획에 있다. 그러나 이러한 비점오염저감시설을 적용하였을 때의 저감효율은 밭의 면적이나 경사도, 경사장 등 다양한 조건을 고려해야 하는 어려움이 있어, 이에 대한 연구는 매우 제한적으로 이루어져 왔다. 이에 따라, 각 경작지에 적용된 개별 비점오염저감시설이 유역 말단에 미치는 영향에 대한 연구 역시 미비한 실정이다. 그러나 비점오염저감대책 및 계획은 유역 말단을 기준으로 하는 경우가 많고, 유량 및 수질에 대한 모니터링 자료 역시 유역 말단에 위치하기 때문에 개별 비점오염저감시설이 유역 말단에 미치는 영향에 대한 연구는 매우 중요하다고 할 수 있다. 따라서 본 연구에서는 유역단위 평가모델 중 하나인 SWAT을 이용하여 각 경작지 별로 실측 경사장 및 경사도, 개별 비점오염저감시설을 적용하였으며, 개별 비점오염저감시설이 유역말단에 미치는 영향을 평가하였다.

  • PDF

The Relationship between Vegetation (Halophyte Communites) Distribution and Environmental Factors in Estuaries in Korea (한반도 하구에 분포하는 식생(염생식물 군락)과 환경요인 간의 관계)

  • Sung, Nak-Pil;Moon, Jeong-Suk;Kim, Jong-Hak
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.19-34
    • /
    • 2022
  • This study was identified the distribution of vegetation in domestic estuaries and analysed the relationship with environmental fcators based on the health assessment data of the estuary ecosystem surveyed between 2016 and 2018. Of the 325 estuaries surveyed, 187 vegetation communites were investigated in 300 estuaries and 53 halophyte communites accounted for 28.3%. No vegetation distribution was found in the other 25 estuaries. Considering the circulation of estuary, 41 halophyte communites were investigated in open estuaries and 26 halophyte communites in closed estuaries. As a result of canonical correlation analysis (CCA) between the entire distributed vegetation community and environmental factors, salinity (conductivity), T-N, and T-P concentrations were strongly correlated. Among the riverbed material materials of the estuary, the composition ratio of silt, sand, and pebble was the most correlated. Therefor, it is estimated that the distribution location of the halophyte communites were differentiated by being influenced by the sea ares, estuary circulation type, resistance to salinity and riverbed material ratio.

Experimental Study of the mechanism of methane generation under various organic conditions on Lake or Reservoir (호소 환경 조건에 따른 메탄 발생 기작 정량화 실험 연구)

  • Bang, Young Jun;Lee, Sung Woo;Kim, Dong Hyun;Lee, Seong Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.173-173
    • /
    • 2022
  • 유기 퇴적 오염물은 다양한 형태로 호소 바닥에 축적되어 호소 환경 및 생태계에 악영향을 미치고 있으며 메탄가스와 같은 온실가스의 발생을 유발한다. 또한, 수력 산업, 관개, 이·치수 등 다양한 목적에 의해 수체의 형성이 활발하게 이루어지면서 하천 및 호소에 의한 탄소유출을 전지구적 탄소순환에 적극적으로 포함시켜야 한다는 필요성이 증가하고 있다. 따라서 하천 및 호소에서 발생하는 다양한 생지화학적 반응에 의한 메탄 발생 메커니즘 파악은 유역의 중요한 환경평가 지표를 나타내며 탄소 순환을 이해하는데 매우 중요하다. 수온, 수심, 유기물 조건에 따른 하천 및 호소의 메탄 발생을 분석한 연구들이 선행되었으나 생지화학적 특성을 정리하고 이에 따른메탄 발생을 정량화한 연구들은 거의 없는 상황이다. 본 연구는 호소 내 메탄을 발생시키는 기작을 판별하기 위해 수온과 호소 환경과 유사한 TOC(총유기탄소)와 TP(총인) 조건과 같은 유기물 조건을 설정하여 BMP Test를 수행하였다. 반응수조에서 발생한 가스를 포집한 후 GC(Gas Chromatograpghy) 분석을 통해 메탄 생성량을 산출하였고, 유기물 조건에 따라 이론적인 메탄 생성량 대비 실제 발생한 메탄 생성량을 나타내는 생분해도를 산출하여 호소 환경별 주요 기작에 따른 가스 발생을 정량화 하였다. 실험 결과 수온에 가장 큰 영향을 받았으며, 수온에 따라 TP, TOC 순으로 메탄 발생의 영향성을 확인하였다. 향후에는 호소 환경에서의 유기물 조건을 반영하기 위해 입도비, 점착성/ 비점착성 조건, 수체의 높이 조건을 포함한 추가 실험을 수행하고 메탄수율을 정량화하여 호소 내 유기퇴적물에 대한 생지화학적 및 수환경 영향 평가 기법 개발이 가능할 것으로 기대한다.

  • PDF