This study focused on the focus group interview based on the questionnaire. Prior to the interview, we used questionnaires from the previous researchers in order to select the questionnaires and interviews of the focus group. In order to measure the possibility, which is the expression characteristic of the safety education app, the items related to cognitive, sensual, physical, and safety behaviors were used as constituent factors. And the safety education app to analyze was selected 'Water Go GO!' App developed by the National Emergency Management Agency. The results of this study are as follows: First, the learner should help to participate in learning continuously in order to make meaningful learning activities in safety education app learning environment. Second, learners must interact with mobile devices in their apps to facilitate learning while reducing the number of factors that can interfere with learners' learning. This study is meaningful in that it can utilize this design principle as a guideline for enhancing safety behaviors.
우리는 물리적인 현실 세계와 디지털의 가상 세계에서 매일 끊임없이 데이터를 양산해내고 있다. 구글, 아마존, MS, IBM 등의 유수 기업들은 이미 데이터를 수집하고 분석하여 특정 사용자나 불특정 다수에게 다양한 서비스를 제공하면서 새로운 형태의 이윤을 창출하고 있다. 가까운 미래에 사물인터넷(Internet of Things)이 본격적으로 활성화된다면 사람뿐만 아니라 모든 사물들이 인터넷을 통해 데이터를 양산하고 서로 교환하는 그야말로 데이터 빅뱅의 시대가 도래할 것으로 예상된다. 이러한 변혁의 시대에 우리는 사물인터넷을 통해 수집되는 수많은 데이터를 어떻게 활용할 것인지에 대해 진지하게 고민하고 연구할 필요가 있다. 본고에서는 사물인터넷을 통해 수집된 데이터를 효과적으로 활용하기 위해 필요한 핵심기술 중 하나인 기계학습(Machine Learning)에 대해 기본 개념, 종류, 평가방법 등을 설명하고 기계학습 알고리즘 중 딥 러닝(Deep Learning)에 대한 기술 동향을 살펴본 후, 사물인터넷에서 기계학습 프레임워크에 대해 간략히 소개한다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.354-354
/
2022
딥러닝(Deep Learning)은 일반적으로 인공신경망(Artificial Neural Network) 를 의미하는데, 이에 따른 결과는 데이터의 양, 변수, 학습모델의 학습횟수, 은닉층(Hidden Layer)의 개수 등 여러 요소로 인해 결정된다. 본 연구에서는 물리적 장기유출 모형인 SWAT의 결과를 참값으로 LSTM모형의 매개변수인 은닉층 갯수와 학습횟수등의 시나리오를 바탕으로 검보정을 수행하였으며, 최적의 목적함수를 갖는 매개변수를 도출하였다. 이를 이용하여 유량지속곡선을 도출한결과를 SWAT의 결과와 비교해본 결과 매우 높은 상관성을 도출하였으며 이를 통해 수자원분야에서 인공신경망의 활용 가능성을 확인하였다.
Using the tangible programming tools, which combines physical objects (e.g. robot) and educational programming language, may help to encourage learners' creative thinking as well as to enhance problem solving ability. That is, learners can have opportunities to simulate problem solving processes through the physical objects, such as robots. Therefore, they can minimize an fixation about problem solving process. These experience is effective to induce creative thinking that is useful to find new solutions and change environment actively. Therefore, we developed a robot based programming teaching and learning curriculum and implemented it in college level introductory programming courses. The result shows that the robot based programming learning has a positive effect in all three factors of learners' creative problem solving potential, especially in a cognitive factor. The cognitive factor includes general problem solving abilities as well as factors that explain creativity, such as divergent thinking, problem recognition, problem representation. These result means that the developed robot based programming teaching and learning curriculum give positive effect to creative problem solving abilities.
In this paper, we present a simple and fast supervised learning framework based on model predictive control so as to learn motion controllers for a physic-based character to track given example motions. The proposed framework is composed of two components: training data generation and offline learning. Given an example motion, the former component stochastically controls the character motion with an optimal controller while repeatedly updating the controller for tracking the example motion through model predictive control over a time window from the current state of the character to a near future state. The repeated update of the optimal controller and the stochastic control make it possible to effectively explore various states that the character may have while mimicking the example motion and collect useful training data for supervised learning. Once all the training data is generated, the latter component normalizes the data to remove the disparity for magnitude and units inherent in the data and trains an artificial neural network with a simple architecture for a controller. The experimental results for walking and running motions demonstrate how effectively and fast the proposed framework produces physics-based motion controllers.
KIPS Transactions on Software and Data Engineering
/
v.8
no.12
/
pp.491-498
/
2019
Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.
Journal of The Korean Association of Information Education
/
v.5
no.1
/
pp.17-29
/
2001
As the result of the rapid development of communication technology makes the circumstance and method of education change, distance education is adapted to new fields of education so that students can be educated what they need in the time and space which they want instead of relying on the existing physical frameworks. In this paper Learner-Analysing System was designed and implemented in the distance education based on the web. For the easy access and the demand of customers, this Learner-Analysing System is composed of the Q&A-processing module which can produce proper results for questions and acquisitions of their own study materials through efficient search, and the student-analyzing module for reinforcement of feedback through correct analysis.
토론학습시 보다 자발적인 아동의 참여를 향상시킬 수 있는 웹토론시스템은 시간의 편의성을 제공하고 학습자간의 상호작용을 활발하게 한다. 그러나 기존 웹토론시스템은 능숙한 자판사용능력과 물리적인 교육적 환경을 요구한다. Wiki는 하와이어로 '빨리'라는 뜻으로 누구나 '자유롭게' 정보와 지식을 편집할 수 있는 동적 프로그래밍 도구이다. Wiki를 사용하여 기존의 웹토론시스템의 단점을 보안한 본 시스템의 목적은 학습자의 자발적인 토론참여와 토론학습에 대한 흥미를 유발하는 것이다. 본 시스템의 특징은 다음과 같다. 첫째, 본 시스템은 웹토론에 대한 학생들의 흥미를 높일수 있다. 즉 누구나 관리자가 될 수 있는 기능을 이용해서 학생들의 흥미를 유발하였기 때문이다. 둘째, Wiki 웹토론시스템은 기존의 웹토론시스템보다 사용이 편리하여 학생의 참여도를 향상시키고 토론학습에 대한 관심을 증대시킬 수 있다. 기존의 웹토론시스템은 회원가입을 해야하고 로그인을 해야만 토론학습에 참여할 수 있지만 본 시스템은 웹페이지접속만으로도 가능하게 하였다. 셋째, Wiki 웹토론시스템은 웹토론를 학습하는 과정을 공개하여 올려지는 자료나 다른 사람의 의견을 통해 지식공유를 가능하게 한다. 즉, 자신이 찾은 주장의 근거을 찾는 과정에서나 또 그 근거를 통해 새로운 지식을 알게 되고 본 시스템에서 의견을 개진하고 다른 사람의 의견의 근거를 살펴보면서 지식을 공유하게 한다.
Motion synthesis using physics-based controllers can generate a character animation that interacts naturally with the given environment and other characters. Recently, various methods using deep neural networks have improved the quality of motions generated by physics-based controllers. In this paper, we present a control policy learned by deep reinforcement learning (DRL) that enables Luxo, the mascot character of Pixar animation studio, to run towards a random goal location while imitating a reference motion and maintaining its balance. Instead of directly training our DRL network to make Luxo reach a goal location, we use a reference motion that is generated to keep Luxo animation's jumping style. The reference motion is generated by linearly interpolating predetermined poses, which are defined with Luxo character's each joint angle. By applying our method, we could confirm a better Luxo policy compared to the one without any reference motions.
Learning styles affect how students access and handle their task, so it is very important to understand how they study, when planning teaching-learning process, to enhance their potential to the maximum. In addition, in order to improve the quality of gifted education, there is a need to examine the curriculum and teaching-learning process which reflect learner characteristics. In this study, gifted student's preferred learning styles are investigated using questionnaires and learning style inventory. Also by analyzing the characteristics of the learners, it is hoped to get parents and teachers to understand the gifted who have various talents, and to support teaching programs for the gifted in order to develop their potential. This study shows that there are differences in the studying style between the gifted child and the average child. Namely, learner's physical and psychological environment can affect learning styles. Also there is a difference between the studying style which the gifted students prefer and the teaching style which teachers use most frequently. Programs for the gifted should be planned through better understanding of the characteristics of the learners.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.