• Title/Summary/Keyword: 문장 필터링

Search Result 35, Processing Time 0.02 seconds

Preprocessing Technique for Malicious Comments Detection Considering the Form of Comments Used in the Online Community (온라인 커뮤니티에서 사용되는 댓글의 형태를 고려한 악플 탐지를 위한 전처리 기법)

  • Kim Hae Soo;Kim Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.103-110
    • /
    • 2023
  • With the spread of the Internet, anonymous communities emerged along with the activation of communities for communication between people, and many users are doing harm to others, such as posting aggressive posts and leaving comments using anonymity. In the past, administrators directly checked posts and comments, then deleted and blocked them, but as the number of community users increased, they reached a level that managers could not continue to monitor. Initially, word filtering techniques were used to prevent malicious writing from being posted in a form that could not post or comment if a specific word was included, but they avoided filtering in a bypassed form, such as using similar words. As a way to solve this problem, deep learning was used to monitor posts posted by users in real-time, but recently, the community uses words that can only be understood by the community or from a human perspective, not from a general Korean word. There are various types and forms of characters, making it difficult to learn everything in the artificial intelligence model. Therefore, in this paper, we proposes a preprocessing technique in which each character of a sentence is imaged using a CNN model that learns the consonants, vowel and spacing images of Korean word and converts characters that can only be understood from a human perspective into characters predicted by the CNN model. As a result of the experiment, it was confirmed that the performance of the LSTM, BiLSTM and CNN-BiLSTM models increased by 3.2%, 3.3%, and 4.88%, respectively, through the proposed preprocessing technique.

Automatic Construction of Alternative Word Candidates to Improve Patent Information Search Quality (특허 정보 검색 품질 향상을 위한 대체어 후보 자동 생성 방법)

  • Baik, Jong-Bum;Kim, Seong-Min;Lee, Soo-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.861-873
    • /
    • 2009
  • There are many reasons that fail to get appropriate information in information retrieval. Allomorph is one of the reasons for search failure due to keyword mismatch. This research proposes a method to construct alternative word candidates automatically in order to minimize search failure due to keyword mismatch. Assuming that two words have similar meaning if they have similar co-occurrence words, the proposed method uses the concept of concentration, association word set, cosine similarity between association word sets and a filtering technique using confidence. Performance of the proposed method is evaluated using a manually extracted alternative list. Evaluation results show that the proposed method outperforms the context window overlapping in precision and recall.

Frequency and Social Network Analysis of the Bible Data using Big Data Analytics Tools R (빅데이터 분석도구 R을 이용한 성경 데이터의 빈도와 소셜 네트워크 분석)

  • Ban, ChaeHoon;Ha, JongSoo;Kim, Dong Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.166-171
    • /
    • 2020
  • Big data processing technology that can store and analyze data and obtain new knowledge has been adjusted for importance in many fields of the society. Big data is emerging as an important problem in the field of information and communication technology, but the mind of continuous technology is rising. the R, a tool that can analyze big data, is a language and environment that enables information analysis of statistical bases. In this paper, we use this to analyze the Bible data. We analyze the four Gospels of the New Testament in the Bible. We collect the Bible data and perform filtering for analysis. The R is used to investigate the frequency of what text is distributed and analyze the Bible through social network analysis, in which words from a sentence are paired and analyzed between words for accurate data analysis.

Course recommendation system using deep learning (딥러닝을 이용한 강좌 추천시스템)

  • Min-Ah Lim;Seung-Yeon Hwang;Dong-Jin Shin;Jae-Kon Oh;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.193-198
    • /
    • 2023
  • We study a learner-customized lecture recommendation project using deep learning. Recommendation systems can be easily found on the web and apps, and examples using this feature include recommending feature videos by clicking users and advertising items in areas of interest to users on SNS. In this study, the sentence similarity Word2Vec was mainly used to filter twice, and the course was recommended through the Surprise library. With this system, it provides users with the desired classification of course data conveniently and conveniently. Surprise Library is a Python scikit-learn-based library that is conveniently used in recommendation systems. By analyzing the data, the system is implemented at a high speed, and deeper learning is used to implement more precise results through course steps. When a user enters a keyword of interest, similarity between the keyword and the course title is executed, and similarity with the extracted video data and voice text is executed, and the highest ranking video data is recommended through the Surprise Library.

Development of a Ranking System for Tourist Destination Using BERT-based Semantic Search (BERT 기반 의미론적 검색을 활용한 관광지 순위 시스템 개발)

  • KangWoo Lee;MyeongSeon Kim;Soon Goo Hong;SuGyeong Roh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.91-103
    • /
    • 2024
  • A tourist destination ranking system was designed that employs a semantic search to extract information with reasonable accuracy. To this end the process involves collecting data, preprocessing text reviews of tourist spots, and embedding the corpus and queries with SBERT. We calculate the similarity between data points, filter out those below a specified threshold, and then rank the remaining tourist destinations using a count-based algorithm to align them semantically with the query. To assess the efficacy of the ranking algorithm experiments were conducted with four queries. Furthermore, 58,175 sentences were directly labeled to ascertain their semantic relevance to the third query, 'crowdedness'. Notably, human-labeled data for crowdedness showed similar results. Despite challenges including optimizing thresholds and imbalanced data, this study shows that a semantic search is a powerful method for understanding user intent and recommending tourist destinations with less time and costs.