• 제목/요약/키워드: 문장 표현

검색결과 533건 처리시간 0.033초

맥락적 어휘 지식 그래프 추출 알고리즘의 설계 (Design of a Contextual Lexical Knowledge Graph Extraction Algorithm)

  • 남상하;최규현;함영균;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.147-151
    • /
    • 2016
  • 본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체 중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.

  • PDF

개체명 공기 정보를 이용한 이벤트 문장의 단문 구조 분석 (Clausal Segmentation for Event Sentences Using Named Entity Co-occurrence Information)

  • 임수종;김태현;황이규;윤보현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.593-596
    • /
    • 2002
  • 정보추출이란 자연어로 작성된 문서 집합에서 원하는 정보를 선택하여 구조화된 표현으로 생성하는 것을 말한다. 문장 단위로 정보 추출 작업을 수행할 때 추출되는 정보를 보유한 문장을 이벤트 문장이라고 정의하고 이러한 이벤트 문장의 구조를 분석하여 최종적으로 유용한 정보를 추출하기 위해서는 이벤트 문장의 구조를 파악하기 위해 이벤트 문장을 단문으로 분할하여 구조를 분석한다. 본 연구에서는 단문 구조 분석을 위해 일반적인 한국어 문장의 특성과 용언의 조사 정보를 이용하고 이러한 정보로 분석할 수 없는 문장에 대해서는 공기 정보를 사용한다. 사용되는 공기 정보는 개체명이 많이 사용되는 이벤트 문장의 특성을 이용하기 위하여 개체명으로 확장된 명사(개체명)-조사-용언의 공기 정보를 구축하여 사용한다. 개체명 확장된 공기 정보는 일반 공기 정보에 비해 이벤트 문장에서 F-Measure 기준으로 약 2%의 성능향상을 보인다.

  • PDF

비형식적인 문서에 강건한 문장 경계 인식 (Robust Method for Sentence Boundary Identification in informal documents)

  • 김주희;서정연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.266-270
    • /
    • 2010
  • 본 논문에서는 구두점이나 띄어쓰기가 없는 비형식적인 문서에서도 문장의 경계를 잘 인식할 수 있는 문장 경계 인식기를 제안한다. 기존의 문장인식기는 문장경계의 후보를 구두점 출현 위치만으로 하였는데 이는 잡음이 많은 웹문서를 처리하는데 한계가 있다. 반면에 제안한 방법은 문장 경계의 후보를 구두점의 출연 위치로 제한하지 않고 문장 경계 인식을 위한 자질로 구두점에 비 의존적인 음절 n-gram을 사용함으로써, 구두점이 잘 표현된 문서뿐만 아니라 구두점의 생략이 빈번한 웹문서의 문장 경계 인식까지 효과적으로 수행할 수 있다. 통계기반의 기계학습 기법으로 CRFs를 이용하여 하였고, 학습과 실험에 세종계획 말뭉치를 사용하였다. 제안한 문장 경계 인식기는 세종계획 말뭉치에서 99.99%의 정확률과 100.00%의 재현율을 보였고, 세종계획 말뭉치에서 문장 경계의 구두점을 제거한 경우에도 96.20%의 정확률과 87.51%의 재현율을 보여 구두점이 없는 경우에도 문장 경계 인식이 잘이루어짐을 확인할 수 있었다.

  • PDF

어휘정보를 이용한 문장작성에 관한 연구 (A Study on the Sentence Generation using Lexical Information)

  • 황인정;민홍기
    • 융합신호처리학회논문지
    • /
    • 제5권3호
    • /
    • pp.198-204
    • /
    • 2004
  • 본 연구는 언어 장애를 가진 사용자의 언어생활을 돕기 위한 문장작성 방식을 제안한 것이다. 제안한 문장작성 방법은 통신보조기기에 적용할 수 있도록 시스템으로 구현해 보았다. 통신보조기기는 개인 휴대장치로서 필요한 문장을 작성하여 출력하는 기기이다. 언어장애인들의 대표적인 의사표현 수단인 수화는 일반인들과의 의사소통에는 불편하기 때문에 다른 표현 방법이 필요하다. 자모를 모두 입력하여 문장을 작성하는 방식은 키의 수가 많기 때문에 대화할 때 시간이 많이 소용되는 불편한 방식이다. 그러므로 언어장애인을 위한 문장 작성의 가장 중요한 목적은 적절한 장소와 상황에 맞는 단어가 배열된 통신보조기기를 이용하여 적은 키의 수로 문장을 작성하는 것이다. 본 연구의 문장 작성을 구현하기 위한 어휘정보는 사용자 영역을 정하고, 그 영역에 맞는 단어와 문장을 수집하고, 수집된 어휘의 특징을 추출하여 구축되었다. 그리고 제안한 문장 작성 방식의 효용을 측정하기 위해 시스템을 이용하여 문장 작성을 위한 키의 수와 키보드 입력에 의한 자모수를 비교하였다.

  • PDF

은닉 마르코프 모델과 레벨 빌딩을 이용한 한국어 연속 음성 인식 (Recognition of Continuous Spoken Korean Language using HMM and Level Building)

  • 김경현;김상균;김항준
    • 전자공학회논문지C
    • /
    • 제35C권11호
    • /
    • pp.63-75
    • /
    • 1998
  • 한국어 연속 음성에서 발생하는 조음결합문제를 해결하기 위하여 단어를 기본 인식 단위로 사용할 경우 각 단어의 효율적인 표현 방법, 연속된 단어로 이루어진 여러 문장의 표현 방법 그리고 입력된 연속음성을 연속된 여러 단어로의 정합 방법에 관한 연구가 선행되어야 한다. 본 논문에서는 은닉 마르코프 모델과 레벨빌딩 알고리즘을 이용한 한국어 연속 음성 인식 시스템을 제안한다. 각 단어는 은닉 마르코프 모델로 표현하고 문장을 표현하기 위하여 단어 모델을 연결한 형태인 인식 네트워크를 구성한다. 인식네트워크의 탐색 알고리즘으로는 레벨 빌딩 알고리즘을 사용한다. 제안한 방법은 항공기 예약 시스템에 적용한 실험에서 인식율과 인식속도면에서 실용적이었으며 또한 비교적 적은 저장공간으로 전체 문장을 표현하고 쉽게 확장할 수 있다는 장점을 가지고 있다.

  • PDF

문서 주제에 따른 문장 생성을 위한 LSTM 기반 언어 학습 모델 (LSTM based Language Model for Topic-focused Sentence Generation)

  • 김다해;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.17-20
    • /
    • 2016
  • 딥러닝 기법이 발달함에 따라 텍스트에 내재된 의미 및 구문을 어떠한 벡터 공간 상에 표현하기 위한 언어 모델이 활발히 연구되어 왔다. 이를 통해 자연어 처리를 기반으로 하는 감성 분석 및 문서 분류, 기계 번역 등의 분야가 진보되었다. 그러나 대부분의 언어 모델들은 텍스트에 나타나는 단어들의 일반적인 패턴을 학습하는 것을 기반으로 하기 때문에, 문서 요약이나 스토리텔링, 의역된 문장 판별 등과 같이 보다 고도화된 자연어의 이해를 필요로 하는 연구들의 경우 주어진 텍스트의 주제 및 의미를 고려하기에 한계점이 있다. 이와 같은 한계점을 고려하기 위하여, 본 연구에서는 기존의 LSTM 모델을 변형하여 문서 주제와 해당 주제에서 단어가 가지는 문맥적인 의미를 단어 벡터 표현에 반영할 수 있는 새로운 언어 학습 모델을 제안하고, 본 제안 모델이 문서의 주제를 고려하여 문장을 자동으로 생성할 수 있음을 보이고자 한다.

  • PDF

어휘 의미 패턴(Lexico-Semantic Pattern)과 온톨로지를 이용한 정보검색기의 설계 및 구현 (The Design and Implementation of an Information Retrieval System Using Lexico-Semantic Pattern and Ontology)

  • 김병우;고영중
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.957-962
    • /
    • 2007
  • 본 논문에서 제안하는 정보 검색기는 일반적인 불리언(Boolean) 질의를 통해서 정보를 검색하는 것이 아니라, 문장으로 입력된 질의형태의 패턴을 분석하여 그에 맞는 정보를 직접 제공하는 것에 목적을 둔다. 이를 위해 어휘 의미 패턴(Lexical Semantic Pattern)과 온톨로지(Ontology) 기술이 정보검색기 개발에 적용되었다. 제안된 시스템에서는 다양한 형태로 표현된 문장 질의를 어휘 의미 패턴을 사용해서 문장의 질의 패턴을 추출하고 사용자 질의를 하나의 온톨로지(Ontology) 추론 질의와 매칭함으로써 질의에 대한 정확한 해답을 추출할 수 있다. 또한, 자연어 문장 입력에 대한 검색 질의 생성기를 구축하고 온톨로지로 표현된 지식을 사용하여 정보검색기 질의를 자동으로 확장함으로써 더욱 정확한 정보 검색 결과를 만들어 낼 수 있다.

  • PDF

답러닝을 활용한 문장 예측 시스템 (A Prediction System of Sentence using Deep Learning)

  • 정진모;지수진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.402-404
    • /
    • 2018
  • 본 논문은 기존에 주어진 문장 다음에 올 수 있는 문장에 대해 딥러닝을 활용하여 예측하는 시스템이며, 데이터 전처리, 문장 목적 파악, 문맥 파악의 세가지 파트로 구성되어 있다. 전처리 과정에서는 문장에 쓰인 단어에 대한 품사 정보를 Input Feature 로 추가한다. 이어서 문장 목적 파악을 위해서는 상황별로 문장을 표현하는 방법이나 단어들의 순서가 다르기 때문에 단어의 순서보다는 문장의 특징점을 학습한다. 마지막으로 문맥 파악을 위해서 이전 단계에서 학습된 문장별 목적 데이터를 기반으로 데이터의 시간적 흐름에 대한 학습을 진행함으로써 이후에 나올 수 있는 문장을 예측한다.

ELECTRA 기반 순차적 문장 분류 모델 (Sequential Sentence Classification Model based on ELECTRA)

  • 최기현;김학수;양성영;정재홍;임태구;김종훈;박찬규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.327-330
    • /
    • 2020
  • 순차적 문장 분류는 여러 문장들을 입력으로 받아 각 문장들에 대하여 사전 정의된 라벨을 할당하는 작업을 말한다. 일반적인 문장 분류와 대조적으로 기준 문장과 주변 문장 사이의 문맥 정보가 분류에 큰 영향을 준다. 따라서 입력 문장들 사이의 문맥 정보를 반영하는 과정이 필수적이다. 최근, 사전 학습 기반 언어 모델의 등장 이후 여러 자연 언어 처리 작업에서 큰 성능 향상이 있었다. 앞서 언급하였던 순차적 문장 분류 작업의 특성상 문맥 정보를 반영한 언어 표현을 생성하는 사전 학습 기반 언어 모델은 해당 작업에 매우 적합하다는 가설을 바탕으로 ELECTRA 기반 순차적 분류 모델을 제안하였다. PUBMED-RCT 데이터 셋을 사용하여 실험한 결과 제안 모델이 93.3%p로 가장 높은 성능을 보였다.

  • PDF

워드 임베딩과 딥러닝 기법을 이용한 SMS 문자 메시지 필터링 (SMS Text Messages Filtering using Word Embedding and Deep Learning Techniques)

  • 이현영;강승식
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.24-29
    • /
    • 2018
  • 딥러닝에서 자연어 처리를 위한 텍스트 분석 기법은 워드 임베딩을 통해 단어를 벡터 형태로 표현한다. 본 논문에서는 워드 임베딩 기법과 딥러닝 기법을 이용하여 SMS 문자 메시지를 문서 벡터로 구성하고 이를 스팸 문자 메시지와 정상적인 문자 메시지로 분류하는 방법을 제안하였다. 유사한 문맥을 가진 단어들은 벡터 공간에서 인접한 벡터 공간에 표현되도록 하기 위해 전처리 과정으로 자동 띄어쓰기를 적용하고 스팸 문자 메시지로 차단되는 것을 피하기 위한 목적으로 음절의 자모를 특수기호로 왜곡하여 맞춤법이 파괴된 상태로 단어 벡터와 문장 벡터를 생성하였다. 또한 문장 벡터 생성 시 CBOW와 skip gram이라는 두 가지 워드 임베딩 알고리즘을 적용하여 문장 벡터를 표현하였으며, 딥러닝을 이용한 스팸 문자 메시지 필터링의 성능 평가를 위해 SVM Light와 정확도를 비교 측정하였다.