• 제목/요약/키워드: 문장 표현

검색결과 533건 처리시간 0.033초

문서 요약 기법을 이용한 자동 문서 범주화 (Automatic Text Categorization Using Text Summarization Techniques)

  • 박진우;고영중;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.138-145
    • /
    • 2001
  • 자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 분류하는 작업이다. 문서 분류를 위해서는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고, 이러한 자질들을 통해 분류할 문서를 표현해야 한다. 기존의 연구들은 문장간의 구분 없이, 문서 전체에 나타난 각 자질의 빈도수를 이용하여 문서를 표현 한다. 그러나 하나의 문서 내에서도 중요한 문장과 그렇지 못한 문장의 구분이 있으며, 이러한 문장 중요도의 차이는 각각의 문장에 나타나는 자질의 중요도에도 영향을 미친다. 본 논문에서는 문서에서 사용되는 중요 문장 추출 기법을 문서 분류에 적용하여, 문서 내에 나타나는 각 문장들의 문장 중요도를 계산하고 문서의 내용을 잘 나타내는 문장들과 그렇지 못한 문장들을 구분하여 각 문장에서 출현하는 자질들의 가중치를 다르게 부여하여 문서를 표현한다. 이렇게 문장들의 중요도를 고려하여 문서를 표현한 기법의 성능을 평가하기 위해서 뉴스 그룹 데이터를 구축하고 실험하였으며 좋은 성능을 얻을 수 있었다.

  • PDF

감정 표현구 단위 분류기와 문장 단위 분류기의 결합을 통한 주관적 문장 분류의 성능 향상 (Combining Sentimental Expression-level and Sentence-level Classifiers to Improve Subjective Sentence Classification)

  • 강인호
    • 정보처리학회논문지B
    • /
    • 제14B권7호
    • /
    • pp.559-566
    • /
    • 2007
  • 주관적 문장이란 주관적인 내용을 포함한 문장으로써 저자의 제품이나 사건에 대한 생각을 알 수 있다. 주관적 내용임을 나타내는 주관적인 표현은 문장 전반적으로 골고루 나타날 수도 있지만 일부 한정된 영역에서만 발견될 수도 있다. 따라서 보다 정확한 분류를 위해서는, 문장 전체를 고려하는 정보 외에 사실이나 감정을 표현하는 주관적 혹은 객관적 표현구 정보의 활용이 필요하다. 본 연구에서는 문장 전체를 이용한 분류 결과와 감정 표현구를 이용한 분류 결과를 결합하여 주/객관적 문장 분류기의 성능을 향상시키는 방법을 제안한다. 한 문장은 여러 개의 표현구를 가질 수 있어 복수개의 표현구 단위 결과를 얻게 되며 기계 학습을 응용하여 문장 단위 결과와 결합한다. 실험을 통한 결과, 표현구 단위 결과물 중 최대값을 가지는 두 가지 결과와 문장 전체를 이용한 결과를 합침으로써 2.5% 성능 향상된 79.7%의 정확률을 얻을 수 있었다.

한국어 문장 표현을 위한 비지도 대조 학습 방법론의 비교 및 분석 (Comparison and Analysis of Unsupervised Contrastive Learning Approaches for Korean Sentence Representations)

  • 유영현;이규민;전민진;차지이;김강산;김태욱
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.360-365
    • /
    • 2022
  • 문장 표현(sentence representation)은 자연어처리 분야 내의 다양한 문제 해결 및 응용 개발에 있어 유용하게 활용될 수 있는 주요한 도구 중 하나이다. 하지만 최근 널리 도입되고 있는 사전 학습 언어 모델(pre-trained language model)로부터 도출한 문장 표현은 이방성(anisotropy)이 뚜렷한 등 그 고유의 특성으로 인해 문장 유사도(Semantic Textual Similarity; STS) 측정과 같은 태스크에서 기대 이하의 성능을 보이는 것으로 알려져 있다. 이러한 문제를 해결하기 위해 대조 학습(contrastive learning)을 사전 학습 언어 모델에 적용하는 연구가 문헌에서 활발히 진행되어 왔으며, 그중에서도 레이블이 없는 데이터를 활용하는 비지도 대조 학습 방법이 주목을 받고 있다. 하지만 대다수의 기존 연구들은 주로 영어 문장 표현 개선에 집중하였으며, 이에 대응되는 한국어 문장 표현에 관한 연구는 상대적으로 부족한 실정이다. 이에 본 논문에서는 대표적인 비지도 대조 학습 방법(ConSERT, SimCSE)을 다양한 한국어 사전 학습 언어 모델(KoBERT, KR-BERT, KLUE-BERT)에 적용하여 문장 유사도 태스크(KorSTS, KLUE-STS)에 대해 평가하였다. 그 결과, 한국어의 경우에도 일반적으로 영어의 경우와 유사한 경향성을 보이는 것을 확인하였으며, 이에 더하여 다음과 같은 새로운 사실을 관측하였다. 첫째, 사용한 비지도 대조 학습 방법 모두에서 KLUE-BERT가 KoBERT, KR-BERT보다 더 안정적이고 나은 성능을 보였다. 둘째, ConSERT에서 소개하는 여러 데이터 증강 방법 중 token shuffling 방법이 전반적으로 높은 성능을 보였다. 셋째, 두 가지 비지도 대조 학습 방법 모두 검증 데이터로 활용한 KLUE-STS 학습 데이터에 대해 성능이 과적합되는 현상을 발견하였다. 결론적으로, 본 연구에서는 한국어 문장 표현 또한 영어의 경우와 마찬가지로 비지도 대조 학습의 적용을 통해 그 성능을 개선할 수 있음을 검증하였으며, 이와 같은 결과가 향후 한국어 문장 표현 연구 발전에 초석이 되기를 기대한다.

  • PDF

문장 중요도를 이용한 자동 문서 범주화 (Automatic Text Categorization using the Importance of Sentences)

  • 고영중;박진우;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권6호
    • /
    • pp.417-424
    • /
    • 2002
  • 자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 분류하는 작업이다. 문서 분류를 위해서는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고, 이러한 자질들을 통해 분류할 문서를 표현해야 한다. 기존의 연구들은 문장간의 구분 없이, 문서 전체에 나타난 각 자질의 빈도수를 이용하여 문서를 표현 한다. 그러나, 하나의 문서 내에서도 중요한 문장과 그렇지 못한 문장의 구분이 있으며, 이러한 문장 중요도의 차이는 각각의 문장에 나타나는 자질의 중요도에도 영향을 미친다. 본 논문에서는 문서 요약에서 사용되는 중요 문장 추출 기법을 문서 분류에 적용하여, 문서 내에 나타나는 각 문장들의 문장 중요도를 계산하고 문서의 내용을 잘 나타내는 문장들과 그렇지 못한 문장들을 구분하여 각 문장에서 출현하는 자질들의 가중치를 다르게 부여하여 문서를 표현한다. 이렇게 문장들의 중요도를 고려하여 문서를 표현한 기법의 성능을 평가하기 위해서 뉴스 그룹 데이타를 구축하고 실험하였으며 문장 중요도를 사용하지 않은 시스템 보다 향상된 성능을 얻을 수 있었다.

토픽-코멘트 구조에 기반한 한국어 표층 생성기 (Korean Surface Realizer Based on Topic-Comment Structure)

  • 김정은;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.503-508
    • /
    • 2001
  • 본 논문은 자연언어생성 기술을 이용하여 질병에 대한 기술문을 생성해 내는 시스템에서 사용되는 표층 생성기에 대해서 다루고 있다. 표층 생성기는 문장의 추상적인 표현으로부터 통사적으로, 형태론적으로 올바른 텍스트로 생성하여 내는 것을 목표로 한다. 질병에 관한 기술문에 있는 문장들은 두가지 특징을 가지고 있다. 첫번째로, 질병 기술문의 문장들은 토픽-코멘트 구조로 나타내어질 수 있다. 두번째로, 같은 의미 범주에 속하는 문장들은 같은 토픽을 가진다. 따라서, 토픽은 의미범주로부터 유추될 수 있으므로 표층 생성기의 입력인 구 명세 (phrase specification)에 표현될 필요가 없다. 본 논문에서는 이런 특징을 이용하여 효율적인 표층 생성기를 만들기 위하여 표층 생성의 단계를 내부 표현 생성과 외부 문장 생성의 두 단계로 나누었다. 내부 표현 생성 단계에서는 코멘트에 해당하는 부분을 생성하고 외부 문장 생성 단계에서 의미범주 태그에 따라 토픽을 첨가하여 최종 문장으로 생성하였다. 이런 방법으로 실험한 결과, 본 표층 생성기는 문법에 맞으면서 자연스러운 텍스트를 생성해 낸다는 것을 알 수 있었다.

  • PDF

트위터 해시 태그를 이용한 End-to-end 뉴럴 모델 기반 키워드 추출 (End-to-end Neural Model for Keyphrase Extraction using Twitter Hash-tag Data)

  • 이영훈;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.176-178
    • /
    • 2018
  • 트위터는 최대 140자의 단문을 주고받는 소셜 네트워크 서비스이다. 트위터의 해시 태그는 주로 문장의 핵심 단어나 주요 토픽 등을 링크하게 되는데 본 논문에서는 이러한 정보를 이용하여 키워드 추출에 활용한다. 문장을 Character CNN, Bi-LSTM을 통해 문장 표현을 얻어내고 각 Span에서 이러한 문장 표현을 활용하여 Span 표현을 생성한다. Span 표현을 이용하여 각 Span에 대한 Score를 얻고 높은 점수의 Span을 이용하여 키워드를 추출한다.

  • PDF

관용적 표현의 대응 관계에 기반한 영어-한국어 기계 번역 (English-Korean Machine Translation based-on Bilingual Relation of Idiomatic Expressions)

  • 윤성희;김영택
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1993년도 제5회 한글 및 한국어정보처리 학술대회
    • /
    • pp.571-580
    • /
    • 1993
  • 영어 문장을 한국어 문장으로 기계 번역하는 과정에는 분석 규칙이나 변환 규칙만으로는 해결하기 어려운 표현의 대응 관계들이 많이 나타난다. 본 논문은 영어-한국어 기계 번역에서 질적으로 향상된 한국어 문장을 얻기 위하여 두 언어 표현들 사이의 관용적 대응 관계에 기반하는 번역 방식을 논한다. 두 언어 표현들 사이의 다양한 직접 대응 관계를 제공하는 번역 사전을 이용하며, 입력 영어 문장으로부터 이와 같은 표현들을 인식하고 한국어 표현으로 직접적으로 대응시키는 번역 방식이다. 이러한 번역 방식은 기존의 변환 규칙 기반의 번역 방식보다 자연스러운 한국어 문장을 생성할 뿐만 아니라, 많은 구조적-의미적 모호성을 해결함으로써 시간적-공간적 처리효율을 크게 높일 수 있다.

  • PDF

문서 분류를 위한 문장 응집도와 주어 주도의 주제어 추출 (Sentence Cohesion & Subject driving Keywords Extraction for Document Classification)

  • 안희국;노희영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.463-465
    • /
    • 2005
  • 문서분류 시 문서의 내용을 표현하기 위한 자질로서 사용되는 단어의 출현빈도정보는 해당 문서의 주제어를 표현하기에 취약한 점을 갖고 있다. 즉, 키워드가 문장에서 어떠한 목적(의미)으로 사용되었는지에 대한 정보를 표현할 수가 없고, 문장 간의 응집도가 강한 문장에서 추출되었는지 아닌지에 대한 정보를 표현할 수가 없다. 따라서, 이 정보로부터 문서분류를 하는 것은 그 정확도에 있어서 한계를 갖게 된다. 본 논문에서는 이러한 문서표현의 문제를 해결하기위해, 키워드를 선택할 때, 자질로서 문장의 역할(주어)정보를 추출하여 가중치 부여방식을 통하여 주어주도정보량을 추출하였다. 또한, 자질로서 문장 내 키워드들의 동시출현빈도 정보를 추출하여 문장 간 키워드들의 연관성정도를 시소러스에 담아내었다. 그리고, 이로부터 응집도 정보를 추출하였다. 이 두 정보의 통합으로부터 문서 주제어를 결정함으로서, 문서분류를 위한 주제어 추출 시 불필요한 키워드의 삽입을 줄이고, 동시 출현하는 키워드들에 대한 선택 기준을 제공하고자 하였다. 실험을 통해 한번 출현한 키워드라도, 문장을 주도하는 주어로서 사용될 경우와 응집도 가중치가 높을 경우에 주제어로서의 선택될 가능성이 향상되고, 문서분류를 위해 좀 더 세분화된 키워드 점수화가 가능함을 확인하였다. 따라서, 선택된 주제어가 문서분류의 정확도에 있어서 향상을 가져올 수 있을 것으로 기대한다.

  • PDF

Self-Attention 기반의 문장 임베딩을 이용한 효과적인 문장 유사도 기법 기반의 FAQ 시스템 (An Effective Sentence Similarity Measure Method Based FAQ System Using Self-Attentive Sentence Embedding)

  • 김보성;김주애;이정엄;김선아;고영중;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.361-363
    • /
    • 2018
  • FAQ 시스템은 주어진 질문과 가장 유사한 질의를 찾아 이에 대한 답을 제공하는 시스템이다. 질의 간의 유사도를 측정하기 위해 문장을 벡터로 표현하며 일반적으로 TFIDF, Okapi BM25와 같은 방법으로 계산한 단어 가중치 벡터를 이용하여 문장을 표현한다. 하지만 단어 가중치 벡터는 어휘적 정보를 표현하는데 유용한 반면 단어의 의미적인(semantic) 정보는 표현하기 어렵다. 본 논문에서는 이를 보완하고자 딥러닝을 이용한 문장 임베딩을 구축하고 단어 가중치 벡터와 문장 임베딩을 조합한 문장 유사도 계산 모델을 제안한다. 또한 문장 임베딩 구현 시 self-attention 기법을 적용하여 문장 내 중요한 부분에 가중치를 주었다. 실험 결과 제안하는 유사도 계산 모델은 비교 모델에 비해 모두 높은 성능을 보였고 self-attention을 적용한 실험에서는 추가적인 성능 향상이 있었다.

  • PDF

그래프⇋시퀀스의 반복적 추론을 이용한 한국어 AMR 파싱 (Korean AMR Parsing using Graph⇋Sequence Iterative Inference)

  • 민진우;나승훈;최현수;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.211-214
    • /
    • 2020
  • Abstract Meaning Representation(AMR)은 문장의 의미를 그래프 구조로 인코딩하여 표현하는 의미 형식표현으로 문장의 각 노드는 사건이나 개체를 취급하는 개념으로 취급하며 간선들은 이러한 개념들의 관계를 표현한다. AMR 파싱은 주어진 문장으로부터 AMR 그래프를 생성하는 자연어 처리 태스크이다. AMR 그래프의 각 개념은 추상 표현으로 문장 내의 토큰과 명시적으로 정렬되지 않는 어려움이 존재한다. 이러한 문제를 해결하기 위해 별도의 사전 학습된 정렬기를 이용하여 해결하거나 별도의 정렬기 없이 Sequence-to-Sequence 계열의 모델로 입력 문장으로부터 그래프의 노드를 생성하는 방식으로 연구되어 왔다. 본 논문에서는 문장의 입력 시퀀스와 부분 생성 그래프 사이에서 반복 추론을 통해 새로운 노드와 기존 노드와의 관계를 구성하여 점진적으로 그래프를 구성하는 모델을 한국어 AMR 데이터 셋에 적용하여 Smatch 점수 39.8%의 실험 결과를 얻었다.

  • PDF