Park, Jeiyoon;Kim, Mingyu;Oh, Yerim;Lee, Sangwon;Min, Jiung;Oh, Youngdae
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.287-292
/
2021
좋은 자연어 이해 시스템은 인간과 같이 텍스트에서 단순히 단어나 문장의 형태를 인식하는 것 뿐만 아니라 실제로 그 글이 의미하는 바를 정확하게 추론할 수 있어야 한다. 이 논문에서 우리는 뉴스 헤드라인으로 뉴스의 토픽을 분류하는 open benchmark인 KLUE(Korean Language Understanding Evaluation)에 대하여 기존에 비교 실험이 진행되지 않은 시중에 공개된 다양한 한국어 라지스케일 모델들의 성능을 비교하고 결과에 대한 원인을 실증적으로 분석하려고 한다. KoBERT, KoBART, KoELECTRA, 그리고 KcELECTRA 총 네가지 베이스라인 모델들을 주어진 뉴스 헤드라인을 일곱가지 클래스로 분류하는 KLUE-TC benchmark에 대해 실험한 결과 KoBERT가 86.7 accuracy로 가장 좋은 성능을 보여주었다.
Today, opinion reviews on the Web are often used as a means of information exchange. As the importance of opinion reviews continues to grow, the number of issues for opinion spam also increases. Even though many research studies on detecting spam reviews have been conducted, some limitations of gold-standard datasets hinder research. Therefore, we introduce a new dataset called "Paraphrased Opinion Spam (POS)" that contains a new type of review spam that imitates truthful reviews. We have noticed that spammers refer to existing truthful reviews to fabricate spam reviews. To create such a seemingly truthful review spam dataset, we asked task participants to paraphrase truthful reviews to create a new deceptive review. The experiment results show that classifying our POS dataset is more difficult than classifying the existing spam datasets since the reviews in our dataset more linguistically look like truthful reviews. Also, training volume has been found to be an important factor for classification model performance.
KIPS Transactions on Software and Data Engineering
/
v.8
no.3
/
pp.129-136
/
2019
There are a variety of entities in natural language such as people, organizations, places, and products. These entities can have many various meanings. The ambiguity of entity is a very challenging task in the field of natural language processing. Entity Linking(EL) is the task of linking the entity in the text to the appropriate entity in the knowledge base. Pairwise based approach, which is a representative method for solving the EL, is a method of solving the EL by using the association between two entities in a sentence. This method considers only the interdependence between entities appearing in the same sentence, and thus has a limitation of global interdependence. In this paper, we developed an Entity2vec model that uses Word2vec based on knowledge base of RDF type in order to solve the EL. And we applied the algorithms using the generated model and ranked each entity. In this paper, to overcome the limitations of a pairwise approach, we devised a pairwise approach based on comprehensive interdependency and compared it.
The purpose of this study intend to develop the automatic voice system for language communicating over foreign patients in testing of magnetic resonance imaging. Used sentences for the automatic voice system was selected with twelve sentences and five foreign languages in hospital in use. These translated texts were provided free of charge from Oddcast's website, which is recorded each language-specific voice as Wav files, The recorded audio file were produced by the two types of a power-point show of MS-office 2013(extension; ppsx) form and Web-enabled system using the PHP program to be applied in the mobile phone environment. It is considered to relieve the stress about an language barrier to medical technician and the voice system designed with the variable language will be enhanced the diagnostic information on foreign patients. Because automatic voice system designed for this study can enhance the understanding of test in between korean medical technician and foreign patients, It will be expected to utilize more usefully in clinical practice.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.297-303
/
1999
오늘날 전산망을 통해 대량의 다양한 언어 정보가 일상 언어로 교환되고 있다. 따라서 대량의 이러한 정보를 효율적으로 처리할 수 있는 언어 정보 처리 시스템이 필요하다. Hausser (1999)와 이기용(1999)는 그러한 언어 정보 처리 시스템으로 데이터베이스 의미론을 주장하였다. 이 의미론의 특징은 자연언어의 정보 처리 시스템 구축에 상업용 데이터베이스 관리 시스템을 활용한다는 점이다. 이때 야기되는 문제 중의 하나가 표상(representation)의 문제이다. 그 이유는 언어학의 표상 방법이 데이터베이스 관리 시스템의 표상 방법과 다르기 때문이다. 특히, 관계형 데이터베이스 관리 시스템(RDBMS)에서는 테이블 (table) 형식으로 각종 정보를 표시한다. 따라서, 이 논문의 주안점(主眼点)은 언어학에서 흔히 쓰이는 표상 방법, 즉 문장의 통사 구조를 표시하는 수형(tree)이나 의미 구조를 표시하는 논리 형태(logical form), 또는 단어나 구의 특성을 나타내는 자질 구조(feature structure)를 테이블 형식으로 대체하는 방법을 모색하는 것이다. 더욱이 관계형 데이터베이스 관리 시스템에서는 테이블에 대한 각종 연산, 특히 두 테이블을 연결(link)하는 작업이 가능하고 이런 연산 과정을 통해 정보를 통합하거나 여과할 수 있기 때문에 관련 정보를 하나의 테이블에 표상하거나 정보 자료의 분산 저장과 자료의 순수성을 유지하는 것이 용이하다. 이 논문은 곧 이러한 점을 가급적 간단한 예를 들어 설명하는 데 그 목적이 있다.
Agile development is mentioned a lot by developers these days. XP or Scrum is one of the popular development processes, and it says that unit test automation would drive an agile development successful. The success of unit test automation depends on how well to compare an execution result to its own expected result. that is why this paper focuses on the comparison part. This paper introduces how to build test codes for unit testing, and then concludes with mentioning two considerations of unit testing automation. First, test codes for void-typed methods need Mock Framework to monitor their behavior. Second, the comparison of execution results and expected results is hard to implement in case of testing void-typed methods. We check every sentences of a test path to decide if the testing is fail or pass.
Annual Conference on Human and Language Technology
/
2006.10e
/
pp.148-155
/
2006
한국어 구문 분석에서 가장 어려운 작업들 중에 하나는 종속절의 의존관계 파악이다. 본 논문에서는 이를 해결하기 위해서 종속절의 의존관계를 걸을 구성하는 서술어부(동사와 어미)의 관련 정보의 유무에 따라 의존관계가 성립한다고 가정했다. 즉 각각의 절들의 서술부의 관련 정보의 유무로 보고, 이진 분류 문제로 이 문제를 해결하였다. 사용한 자질은 정적 자질(static feature)와 동적 자질(dynamic feature)를 구성되어 있다. 정적 자질은 동사와 어미에서 표면적인 어휘 정보이고 이는 단어, POS 테그 및 위치 정보들이다. 동적 자질은 문장에서 절이 가지는 문법적인 형태를 의미하고, 이를 추출하기 위해 간단한 규칙을 만들고 이를 바탕으로 CKY 차트 파서를 통하여 추출하였다. 기계학습 방법으로는 이진 분류 문제에서 널리 사용되는 SVM을 사용하였다. 실험 결과 어휘 정보들 중에서 어미의 정보만 사용하였을 경우는 64.4%의 정확도를 보였고 문법적인 정보인 동적 자질을 사용한 경우는 73.5%로 어휘 정보만을 사용한 경우 보다 9.1%의 성능 향상됨을 보였다
한국어는 형태론적으로 굴절어에 속하는 언어로서, 어휘의 형태가 문장 속에서 문법적인 기능을 하게 되고, 형태론적으로 풍부한 언어라는 특징 때문에 조사나 어미와 같은 기능어들이 다양하게 내용어들과 결합한다. 이와 같은 특징들은 한국어를 대상으로 하는 구 기반 통계적 기계번역 시스템에서 데이터 부족문제(Data Sparseness problem)를 더욱 크게 부각시킨다. 하지만, 한국어의 몇몇 조사와 어미는 함께 결합되는 내용어에 따라 의미는 같지만 두 가지의 형태를 가지는 이형태로 존재한다. 따라서 본 논문에서 이러한 이형태들을 하나로 표준화하여 데이터부족 문제를 완화하고, 베트남-한국어 통계적 기계 번역에서 성능이 개선됨을 보였다.
Proceedings of the Acoustical Society of Korea Conference
/
1994.06c
/
pp.249-252
/
1994
Keyword spotting 이란 음성인식의 한 분야로서 컴퓨터가 사람의 음성을 입력받아 이 음성에 미리 정해진 특정단어 또는복수개의 단어들 중 어느 것이 포함되어 있는지의 여부를 찾아내고 이 단어를 식별해 내는 작업을 의미한다. 이러한 keyword spotting 시스템의 인식 오류들을 감소시키는 방법의 하나로 keyword spotting 시스템에 후처리 과정을 둠으로써 잘못 검출된 keyword 들을 제거시키는 방법이 사용될 수 있다. 본 논문에서는 keyword로 검출된 영역에 대한 keyword 모델의 likeihood와 그 여역에 대한 filler 모델의 likelihood의 ratio 와 second best keyword 의 likelihood 그리고, 끝점존재 영역의 구간 길이등 여러 가지 정보를 이용한 후처리과정을 검토하고 인식실험을 통해 이들의 성능을 비교하였다. 6개의 부서명을 keyword로 하는 불특정 화자 keyword spotting 실험을 수행한 결과 baseline 시스템의 경우 고립단어 및 문장 형태의 음성에 대해 95.0%의 keyword 인식률을 얻었으며, 본 논문에서 검토된 네 가지 후처리 방법에 의해 keyword rejection ratio를 0%에서 5%까지 변화시켜 나갈 경우 최저 95.3%에서 최고 97.1%까지 keyword 인식률이 향상된 결과를 얻었다. 특히 성능과 계산량을 종합적으로 고려할 때 끝점 존재 영역의 구간 길이 정보를 이용한 방법이 가장 우수하였다.
프로그램의 실행시간은 캐쉬메모리의 효율적 사용과 밀접한 관계가 있다. 특히 간섭 실패는 프로그램의 성능에 큰 영향을 미치지만 나타나는 형태가 불규칙적이므로 예측하기가 매우 어렵다. 본 논문에서는 직접 사상 캐쉬전략을 사용한 완전 중첩 루프 내 배열의 캐쉬 실패율(cache miss ratio)을 구하는 분석적 모델을 제시한다. 논문에서 제시한 모델을 임의의 캐쉬 위치에 각 배열이 접근한 시간을 기반으로 다음주기에서 캐쉬 실패의 발생 여부를 예측하는데, 간섭으로 발생한 캐쉬 실패 개수에 대해 기존에 제시된 모델보다 더 빠르고 정확한 예측이 가능하다. 특히, 한문장의 수행시간 예측시간은 배열의 크기와 독립적이기 때문에, 전체 프로그램의 수행시간 예측은 배열의 크기 및 문장의 반복 회수 배만큼 빠른 결과를 보여준다. 본 모델은 프로그램의 성능예측 뿐만 아니라 데이터 지역성의 최적화, 캐쉬 구성, 스케쥴링 등에서도 이용 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.