• 제목/요약/키워드: 문장의 복잡도

검색결과 133건 처리시간 0.029초

LR 파서를 위한 효율적인 점진적 파싱 (An Efficient Incremental Parsing for LR Parsers)

  • 안희학
    • 한국정보처리학회논문지
    • /
    • 제5권6호
    • /
    • pp.1660-1669
    • /
    • 1998
  • 본 논문에서는 실제 사용에 있어서 시간과 기억 장소를 상당히 요구하는 기존의 점진적 파싱 알고리즘들을 조사하여, 이들보다 효율적인 점진적 LR 파싱 알고리즘을 제안한다. 문법 기호를 포함하는 확장형 LR 파싱표를 본 논문에서 제안한 점진적 LR 파싱 알고리즘을 적용한다. 여러 문장의 경우에 본 점진적 LR 파싱 알고리즘을 이용하여 파싱 단계와 기억 장소를 감소시켰다. 본 알고리즘은 복잡하고 큰 문법의 경우에 더욱 효과적이다.

  • PDF

한일 기계번역을 위한 보문의 수식 Scope 해석 (The Modification Scope Analysis of the Embedded Sentences in Korean and Japanese Machine Translation)

  • 이수현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.346-350
    • /
    • 1996
  • 한일 양언어의 복합문은 여러가지의 통어 현상을 가지며, 주어, 목적어 등의 생략 현상으로 문장의 표층상에 나타나지 않는 것이 있기 때문에 수식구조의 처리가 복잡해지고, 구문해석에 있어서 애매성의 요인이 된다. 따라서, 본 논문에서는 DPN에 의하여 한국어와 일본어의 수식 scope를 해석하는 방법에 대하여 설명한다. 먼저, 한일 양언어의 공통점과 차이점을 찾아내어, 한국어와 일본어의 보문을 표현형식으로 나타내고, 동사의 격정보로부터 DPN을 구성하여 DPN상에서 보문의 수식 Scope를 해석하는 방법에 대해서 설명한다.

  • PDF

자연어 질의 유형판별과 응답 추출을 위한 어휘 의미체계에 관한 연구 (A Study on Word Semantic Categories for Natural Language Question Type Classification and Answer Extraction)

  • 윤성희
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 추계학술대회
    • /
    • pp.141-144
    • /
    • 2004
  • 질의응답 시스템이 정보검색 시스템과 다른 중요한 점은 질의 처리 과정이며, 자연어 질의 문장에서 사용자의 질의 의도를 파악하여 질의 유형을 분류하는 것이다. 본 논문에서는 질의 주-형을 분류하기 위해 복잡한 분류 규칙이나 대용량의 사전 정보를 이용하지 않고 질의 문장에서 의문사에 해당하는 어휘들을 추출하고 주변에 나타나는 명사들의 의미 정보를 이용하여 세부적인 정답 유형을 결정할 수 있는 질의 유형 분류 방법을 제안한다. 의문사가 생략된 경우의 처리 방법과 동의어 정보와 접미사 정보를 이용하여 질의 유형 분류 성능을 향상시킬 수 있는 방법을 제안한다.

  • PDF

의미 정보를 이용한 이단계 단문분할 (Two-Level Clausal Segmentation using Sense Information)

  • 박현재;우요섭
    • 한국정보처리학회논문지
    • /
    • 제7권9호
    • /
    • pp.2876-2884
    • /
    • 2000
  • 단문분할은 한 문장에 용언이 복수개 있을 때 용언을 중심으로 문장을 나누는 방법이다. 기존의 방법은 정형화된 문장의 경우 비교적 효율적인 결과를 얻을 수 있으나, 구문적으로 복잡한 문장인 경우는 한계를 보였다. 본 논문에서는 이러한 한계를 극복하기 위해서 구문 정보만이 아니라, 의미 정보를 활용하여 단문을 분할하는 방법을 제안한다. 정형화된 문장의 경우와 달리 일상적인 문장은 무장 구조의 모호성이나 조사의 생략 등이 빈번하므로 의미 수준에서의 단문분할이 필요하다. 의미 영역에서 단문분할을 하면 기존의 구문 의존적인 방법들에서 발생하는 모호성을 상당수 해소할 수 있게 된다. 논문에서는 먼저 하위범주와 사전과 시소러스의 의미 정보를 이용하여 용언과 보어성분 간의 의존구조를 우선적으로 파악하고, 구문적인 정보와 기타 문법적인 지식을 사용하여 기타 성분을 의존구조에 점진적으로 포함시켜가는 이단계 단문분할 알고리즘을 제안한다. 제안된 이단계 단문분할 방법의 유용성을 보이기 위해 ETRI-KONAN의 말뭉치 중 25,000문장을 수작업으로 술어와 보어성분 간의 의존구조를 태깅한 후 본 논문에서 제안한 방법과 비교하는 실험을 수행하였으며, 이때 단문분할의 결과는 91.8%의 정확성을 보였다.

  • PDF

수학 문장제의 명사화 여부에 따른 초등학교 3학년의 해결 과정 분석 (Analysis of the 3rd Graders' Solving Processes of the Word Problems by Nominalization)

  • 강윤지;장혜원
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제26권2호
    • /
    • pp.83-97
    • /
    • 2023
  • 명사화는 문법적 은유 중 하나로, 수식으로 변환해야 하는 대상의 수학화를 용이하게 한다는 장점과 함께 복잡하고 압축된 문장 구성으로 인해 문장 이해를 어렵게 할 가능성이 있다는 단점이 있다. 이러한 명사화가 실제 학생들의 문장제 해결 과정에 어떠한 영향을 미치는지 파악하기 위하여 초등학교 3학년을 대상으로 명사화 여부에 따른 사칙연산 문장제 8개를 제공하여 검사를 실시하였다. 분석 결과, 문장제의 명사화 여부는 문제 이해 및 수식화 가능 여부에 의미 있는 영향을 미치지 못하였다. 그러나, 검사에 참여한 학생에게 명사화에 대한 사전 경험이 없음에도 불구하고 문제 이해 단계에서 명사화 또는 탈명사화가 나타나는 것을 확인하였으며, 명사화의 유형 변화가 발생하는 경우 성공 비율이 높게 나타나는 등 수식화 단계를 용이하게 하였다. 이를 통하여 명사화가 문장제의 문제 이해 및 수식화 단계에서 교수학적 전략으로 활용될 수 있으며 문장제의 학습에서 더 깊이 있는 이해를 유도할 수 있을 것으로 기대할 수 있다. 

A study on the Extraction of Similar Information using Knowledge Base Embedding for Battlefield Awareness

  • Kim, Sang-Min;Jin, So-Yeon;Lee, Woo-Sin
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.33-40
    • /
    • 2021
  • 고도화된 무기체계와 복잡한 전략으로 인하여 지휘관이 분석하고 판단해야 할 정보의 복잡도가 증가하고 있다. 지휘관의 적시적 판단을 위해서 전장의 정보를 지식화하고 분석할 수 있는 지능형 서비스가 필요하다. 지능형 서비스는 전장상황 정보로부터 지식을 추출하는 단계와 지식베이스를 구축하는 단계, 지식베이스로부터 전장상황을 분석하는 단계로 구성된다. 본 논문은 두 번째 단계에서 구축 완료된 지식베이스를 임베딩함으로써 입력 쿼리와 유사한 정보를 추출하는 방안을 연구한다. 지식베이스 임베딩을 위해 문장화 과정이 필요하며 random-walk 알고리즘을 적용한다. 문장화된 정보는 Word2Vec을 활용하여 벡터화되고 코사인 유사도를 통해 입력 쿼리와 유사한 정보를 찾는다. 본 논문에서는 오픈 지식베이스로부터 98개 개체를 기준으로 980개의 문장을 생성하고 100차원의 벡터로 임베딩함으로써 코사인 유사도 기반 유사 개체가 추출됨을 확인했다.

객체지향 프로그램 슬라이싱을 위한 개선된 시스템 종속성 그래프에 대한 연구 (A study on the Enhanced System Dependence Graph for slicing of object-oriented Program)

  • 류희열;김은정
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.115-117
    • /
    • 2002
  • 객체지향 프로그램 슬라이싱을 위한 Loren D Larsen and Marry Jean Harrold가 제안하는 방법은 절차적 프로그램 슬라이싱을 위한 시스템 종속성 그래프 표현방법에 객체지향 패러다임을 표현할 수 있도록 확장하며 2단계 마킹 알고리즘을 적용하여 슬라이스를 계산한다. 시스템 종속성 그래프를 이용한 슬라이싱 방법은 클래스 멤버 변수와 전역변수 및 인스턴스 변수에 대하여 각 메소드 호출 및 진입정점에 actual_in, actual_out, formal_in, formal_out 정점들이 추가되어 복잡도가 증가한다. 본 논문에서는 이들 변수를 클래스 정점의 멤버간선으로 연결하여 각 메소드의 문장에서 사용하면 진출간선 정의하면 진입간선으로 연결하여 정점과 간선들의 개수를 최소화할 수 있도록 시스템 종속성 그래프를 개선하였다. 제안하는 시스템 종속성 그래프는 그래프 복잡도의 최소화와 2단계 알고리즘에 의한 정확한 슬라이스 계산이 장점이다. C++ 예제 프로그램을 적용하여 그래프 복잡도의 감소와 정확한 슬라이스 계산을 기존의 방법과 비교하여 개선됨을 확인하였다.

  • PDF

이용자 태그를 활용한 비디오 스피치 요약의 자동 생성 연구 (Investigating an Automatic Method in Summarizing a Video Speech Using User-Assigned Tags)

  • 김현희
    • 한국문헌정보학회지
    • /
    • 제46권1호
    • /
    • pp.163-181
    • /
    • 2012
  • 본 연구는 스피치 요약의 알고리즘을 구성하기 위해서 방대한 스피치 본문의 복잡한 분석 없이 적용될 수 있는 이용자 태그 기법, 문장 위치 및 문장 중복도 제거 기법의 효율성을 분석해 보았다. 그런 다음, 이러한 분석 결과를 기초로 하여 스피치 요약 방법을 구성, 평가하여 효율적인 스피치 요약 방안을 제안하는 것을 연구 목적으로 하고 있다. 제안된 스피치 요약 방법은 태그 및 표제 키워드 정보를 활용하고 중복도를 최소화하면서 문장 위치에 대한 가중치를 적용할 수 있는 수정된 Maximum Marginal Relevance 모형을 사용하여 구성하였다. 제안된 요약 방법의 성능은 스피치 본문의 단어 빈도 및 단어 위치 정보를 적용하여 상대적으로 복잡한 어휘 처리를 한 Extractor 시스템의 성능과 비교되었다. 비교 결과, 제안된 요약 방법을 사용한 경우가 Extractor 시스템의 경우 보다 평균 정확률은 통계적으로 유의미한 차이를 보이며 더 높았고, 평균 재현율은 더 높았지만 통계적으로 유의미한 차이를 보이지는 못했다.

자연 언어의 장기 의존성을 고려한 심층 학습 모델 (Deep learning model that considers the long-term dependency of natural language)

  • 박찬용;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.281-284
    • /
    • 2018
  • 본 논문에서는 machine reading 분야에서 기존의 long short-term memory (LSTM) 모델이 가지는 문제점을 해결하는 새로운 네트워크를 제안하고자 한다. 기존의 LSTM 모델은 크게 두가지 제한점을 가지는데, 그 중 첫째는 forget gate로 인해 잊혀진 중요한 문맥 정보들이 복원될 수 있는 방법이 없다는 것이다. 자연어에서 과거의 문맥 정보에 따라 현재의 단어의 의미가 크게 좌지우지될 수 있으므로 올바른 문장의 이해를 위해 필요한 과거 문맥의 정보 유지는 필수적이다. 또 다른 문제는 자연어는 그 자체로 단어들 간의 복잡한 구조를 통해 문장이 이루어지는 반면 기존의 시계열 모델들은 단어들 간의 관계를 추론할 수 있는 직접적인 방법을 가지고 있지 않다는 것이다. 본 논문에서는 최근 딥 러닝 분야에서 널리 쓰이는 attention mechanism과 본 논문이 제안하는 restore gate를 결합한 네트워크를 통해 상기 문제를 해결하고자 한다. 본 논문의 실험에서는 기존의 다른 시계열 모델들과 비교를 통해 제안한 모델의 우수성을 확인하였다.

  • PDF

Stack-Pointer Network를 이용한 한국어 의존 구문 분석 (Stack-Pointer Network for Korean Dependency Parsing)

  • 차다은;이동엽;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.685-688
    • /
    • 2018
  • 의존 구문 분석은 자연어 문장에 포함된 단어들 간의 의존 관계를 분석하는 과제로 다양한 자연어 이해 과제에 요구되는 핵심 기술 중 하나이다. 본 연구에서는 단어와 문자 자질을 적용한 기존 Stack-Pointer Network의 인코더의 입력 단어 표상을 확장하여, 한국어를 비롯한 형태적으로 복잡한 언어(morphologically rich language)에 적합하도록 음절-태그 단위, 형태소 단위, 형태소 품사 정보 자질을 보강한 의존 구문 분석 모델을 제안한다. 실험 결과 제안하는 모델은 의존 구조로 변환된 세종 구문 분석 말뭉치에서 UAS 90.58%, LAS 88.35%의 성능을, 2018 국어 정보 처리 시스템 경진 대회 평가 데이터에서 UAS 84.69%, LAS 82.02%의 성능을 보였다. 더불어 제안하는 모델은 포함된 문장의 전체 길이가 긴 의존 관계, 의존소와 지배소의 거리가 먼 의존 관계, 의존소를 구성하는 형태소의 개수가 많은 의존 관계에서 기존 Stack-Pointer Network보다 향상된 성능을 보였다.

  • PDF