Annual Conference on Human and Language Technology
/
2019.10a
/
pp.265-271
/
2019
본 논문은 어휘가 비슷한 문장들을 효과적으로 분류하는 BERT 기반 유사 문장 분류기의 학습 자료 구성 방법을 제안한다. 기존의 유사 문장 분류기는 문장의 의미와 상관 없이 각 문장에서 출현한 어휘의 유사도를 기준으로 분류하였다. 이는 학습 자료 내의 유사 문장 쌍들이 유사하지 않은 문장 쌍들보다 어휘 유사도가 높기 때문이다. 따라서, 본 논문은 어휘 유사도가 높은 유사 의미 문장 쌍들과 어휘 유사도가 높지 않은 의미 문장 쌍들을 학습 자료에 추가하여 BERT 유사 문장 분류기를 학습하여 전체 분류 성능을 크게 향상시켰다. 이는 문장의 의미를 결정짓는 단어들과 그렇지 않은 단어들을 유사 문장 분류기가 학습하였기 때문이다. 제안하는 학습 데이터 구축 방법을 기반으로 학습된 BERT 유사 문장 분류기들의 학습된 self-attention weight들을 비교 분석하여 BERT 내부에서 어떤 변화가 발생하였는지 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2021.05a
/
pp.389-392
/
2021
문장 압축은 원본 문장의 중요한 의미를 보존하는 짧은 길이의 압축 문장을 생성하는 자연어처리 태스크이다. 문장 압축은 사용자가 텍스트로부터 필요한 정보를 빠르게 획득할 수 있도록 도울 수 있어 활발히 연구되고 있지만, 기존 연구들은 사람이 직접 정의한 압축 규칙이 필요하거나, 모델 학습을 위해 대량의 데이터셋이 필요하다는 문제점이 존재한다. 사전 학습된 언어 모델을 통한 perplexity 기반의 문장 점수 측정을 통해 문장을 압축하여 압축 규칙과 모델 학습을 위한 데이터셋이 필요하지 않은 연구 또한 존재하지만, 문장 점수 측정에 문장에 속한 단어들의 의미적 중요도를 반영하지 못하여 중요한 단어가 삭제되는 문제점이 존재한다. 본 논문은 언어 정보 중 품사 정보, 의존관계 정보, 개체명 정보의 중요도를 수치화하여 perplexity 기반의 문장 점수 측정에 반영하는 방법을 제안한다. 또한 제안한 문장 점수 측정 방법을 활용하였을 때 문장 점수 측정 기반 문장 압축 모델의 문장 압축 성능이 향상됨을 확인하였으며, 이를 통해 문장에 속한 단어의 언어 정보를 문장 점수 측정에 반영하는 것이 의미적으로 적절한 압축 문장을 생성하는 데 도움이 될 수 있음을 보였다.
This study is about a method of extracting a summary from a news article in consideration of the importance of each sentence constituting the article. We propose a method of calculating sentence importance by extracting the probabilities of topic sentence, similarity with article title and other sentences, and sentence position as characteristics that affect sentence importance. At this time, a hypothesis is established that the Topic Sentence will have a characteristic distinct from the general sentence, and a deep learning-based classification model is trained to obtain a topic sentence probability value for the input sentence. Also, using the pre-learned ELMo language model, the similarity between sentences is calculated based on the sentence vector value reflecting the context information and extracted as sentence characteristics. The topic sentence classification performance of the LSTM and BERT models was 93% accurate, 96.22% recall, and 89.5% precision, resulting in high analysis results. As a result of calculating the importance of each sentence by combining the extracted sentence characteristics, it was confirmed that the performance of extracting the topic sentence was improved by about 10% compared to the existing TextRank algorithm.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.225-228
/
2019
문장 임베딩은 문장의 의미를 잘 표현 할 수 있도록 해당 문장을 벡터화 하는 작업을 말한다. 문장 단위 입력을 사용하는 자연언어처리 작업에서 문장 임베딩은 매우 중요한 부분을 차지한다. 두 문장 사이의 의미관계를 추론하는 자연어 추론 작업을 통하여 학습한 문장 임베딩 모델이 기존의 비지도 학습 기반 문장 임베딩 모델 보다 높은 성능을 보이고 있다. 따라서 본 논문에서는 문장 임베딩 성능을 높이기 위하여 사전 학습된 BERT 모델을 이용한 문장 임베딩 기반 자연어 추론 모델을 제안한다. 문장 임베딩에 대한 성능 척도로 자연어 추론 성능을 사용하였으며 SNLI(Standford Natural Language Inference) 말뭉치를 사용하여 실험한 결과 제안 모델은 0.8603의 정확도를 보였다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.347-351
/
2018
이 논문은 대화 시스템에서 질의를 이해하기 위해 딥 러닝 모델을 통해 추출된 자동 추출 자질을 이용하여 문장의 유사성을 분석하는 방법에 대해 기술한다. 문장 간 유사성을 분석하기 위한 자동 추출 자질로써, 문장 내 표현 순차적 정보를 반영하기 위한 RNN을 이용하여 생성한 문장 벡터와, 어순에 관계 없이 언어 모델을 학습하기 위한 CNN을 이용하여 생성한 문장 벡터를 사용한다. 이렇게 자동으로 추출된 문장 임베딩 자질은 금융서비스 대화에서 입력 문장을 분류하거나 문장 간 유사성을 분석하는데 이용된다. 유사성 분석 결과는 질의 문장과 관련된 FAQ 문장을 찾거나 답변 지식을 찾는데 활용된다.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.5
/
pp.656-662
/
2012
In this paper, we describe a new summarizing method based on a graph-based and a sense-based analysis. In the graph-based analysis, we convert sentences in a document into word vectors and calculate the similarity between each sentence using LSA. We reflect this similarity of sentences and the rarity scores of words in sentences to define weights of edges in the graph. Meanwhile, in the sense-based analysis, in order to determine the sense of words, subjectivity or objectivity, we built a database which is extended from the golden standards using Wordnet. We calculate the subjectivity of sentences from the sense of words, and select more subjective sentences. Lastly, we combine the results of these two methods. We evaluate the performance of the proposed method using classification games, which are usually used to measure the performances of summarization methods. We compare our method with the MS-Word auto-summarization, and verify the effectiveness of ours.
Proceedings of the Korea Information Processing Society Conference
/
2002.04a
/
pp.531-534
/
2002
본 논문에서는 문서요약의 한 방법으로 문장추상화를 생각하였다. 이에 문장추상화의 판단기준이 되의 한 방법으로 문장추상화를 생각하였다 이에 문장추상화의 판단기준이 되는 요소들을 구문분석기를 통해 얻은 정보와, 문장의 구성성분들이 가지는 온톨로지 정보를 바탕으로 선정하였다. 문장추상화에는 Roget 시소러스에 기반한 온톨로지 OfN, 구문분석기 LGPI+, 그리고 이를 활용하는 문장추상기 SABOT를 이용하였다. 본 논문을 통하여 문장추상화가 문서 과정에 동원할 수 있는 유용한 도구임을 보였다.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.138-145
/
2001
자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 분류하는 작업이다. 문서 분류를 위해서는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고, 이러한 자질들을 통해 분류할 문서를 표현해야 한다. 기존의 연구들은 문장간의 구분 없이, 문서 전체에 나타난 각 자질의 빈도수를 이용하여 문서를 표현 한다. 그러나 하나의 문서 내에서도 중요한 문장과 그렇지 못한 문장의 구분이 있으며, 이러한 문장 중요도의 차이는 각각의 문장에 나타나는 자질의 중요도에도 영향을 미친다. 본 논문에서는 문서에서 사용되는 중요 문장 추출 기법을 문서 분류에 적용하여, 문서 내에 나타나는 각 문장들의 문장 중요도를 계산하고 문서의 내용을 잘 나타내는 문장들과 그렇지 못한 문장들을 구분하여 각 문장에서 출현하는 자질들의 가중치를 다르게 부여하여 문서를 표현한다. 이렇게 문장들의 중요도를 고려하여 문서를 표현한 기법의 성능을 평가하기 위해서 뉴스 그룹 데이터를 구축하고 실험하였으며 좋은 성능을 얻을 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.257-261
/
2008
규칙 기반의 영한 기계번역에서는 영어의 문법 규칙을 구축하고 이를 이용하여 영어의 구문 분석을 수행한다. 그러나 쉼표를 포함한 문장이나 특수한 형식의 문장들은 문법에 의해 분석하기 어렵다. 이를 문법에 의해 분석하기 위해서는 문법이 복잡해지고 문법의 수가 많아지게 되어 분석의 복잡도를 증가시키게 된다. 이러한 문제를 해결하기 위해 이미 존재하는 규칙에 의해 분석할 수 있는 형태로 문장을 바꾸는 문장 다시 쓰기를 제안한다. 문장 다시 쓰기를 위해 쉼표를 포함한 문장에 대해서 다시 쓰기가 필요한 패턴을 구축하였으며 이에 대해 문장 다시 쓰기를 실험하였다. 문장 다시 쓰기를 통해 입력 문장을 변형함으로써 규칙의 추가 없이 구문 분석이 가능하며 제안한 방법은 특수한 형식을 가진 문장 및 쉼표에 의해 연결되는 문장들에 대해 보다 정확한 분석과 번역을 위한 새로운 방법으로서 의의가 있다.
Journal of Elementary Mathematics Education in Korea
/
v.12
no.2
/
pp.185-204
/
2008
The purposes of this study are to analyze sentence structures of word problems suggested in educational math programs for the 2nd grade elementary students and error patterns in sentence interpretation, and examine how sentence structures influence on errors during sentence comprehension. Based on the results of the analysis on 168 word problems suggested in math textbooks for the 2nd grade elementary students and error patterns observed while 160 the 2nd grade elementary students attempted to solve math word problems, easy and simple vocabularies are repeatedly used in the sentence structures of word problems and specific real life materials such as fruits, books, the number of people and etc. were repeatedly used. 51.56% of errors in sentence interpretation observed was higher than 39.20% of calculation errors and backtracking operation, a length of sentences, the numbers used in questions and off were analyzed to be involved in the errors in interpretation. Therefore, it is very important to make word problems from a student's points of view rather than a teacher's point of view and the study suggests that teachers help students learn basic sentence interpretation skills.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.