• 제목/요약/키워드: 문자 스팸

검색결과 37건 처리시간 0.023초

딥러닝을 이용한 비정상 문자 조합으로 구성된 스팸 문자 탐지 기법 (A Technique to Detect Spam SMS with Composed of Abnormal Character Composition Using Deep Learning)

  • 김가현 ;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.583-586
    • /
    • 2023
  • 대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.

스팸 필터링을 위한 지식 그래프 기반의 신조어 감지 매커니즘 (Knowledge Graph-based Korean New Words Detection Mechanism for Spam Filtering)

  • 김지혜;정옥란
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.79-85
    • /
    • 2020
  • 오늘날 스마트폰에서 스팸 문자를 차단하기 위해 문자 내용과 스팸 키워드의 단순 문자열 비교 또는 스팸 전화번호를 차단하는 방식을 사용하고 있다. 이에 따라 스팸 문자가 자동으로 차단되는 것을 방지하기 위해 점차 변화된 방식으로 스팸 문자를 전송한다. 특히 스팸 키워드에 포함되는 단어의 경우 단순 문자열 비교로 검색되지 않도록 특수문자, 한자, 띄어쓰기 등을 이용하여 비정상적인 단어로 스팸 문자를 발송한다. 기존 스팸 필터링 방식의 경우 이러한 스팸 문자를 차단할 수 없다는 한계가 있다. 따라서 변화하는 스팸 문자에 대응할 수 있는 새로운 기술이 필요한 시점이다. 본 논문에서는 스팸 문자에서 자주 사용되는 신조어를 검출하여 변화하는 스팸 문자에 대응할 수 있는 지식 그래프 기반의 신조어 감지 매커니즘을 제안한다. 또한 기본 Naive Bayes에 감지한 신조어를 적용하여 제안한 방법의 성능 실험 결과를 보여준다.

문장 벡터와 전방향 신경망을 이용한 스팸 문자 필터링 (Spam Text Filtering by Using Sen2Vec and Feedforward Neural Network)

  • 이현영;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.255-259
    • /
    • 2017
  • 스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.

  • PDF

문장 벡터와 전방향 신경망을 이용한 스팸 문자 필터링 (Spam Text Filtering by Using Sen2Vec and Feedforward Neural Network)

  • 이현영;강승식
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.255-259
    • /
    • 2017
  • 스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.

  • PDF

동시출현 단어분석 기반 스팸 문자 탐지 기법 (Coward Analysis based Spam SMS Detection Scheme)

  • 오하영
    • 정보보호학회논문지
    • /
    • 제26권3호
    • /
    • pp.693-700
    • /
    • 2016
  • 스팸 데이터 셋은 통상적으로 공개적으로 구하기 어렵고 기존 연구들은 대부분 스팸 이메일에 초점이 맞춰져 왔기 때문에 스팸 문자 메시지 자체 특성을 분석하는데 한계가 있었다. 스팸 이메일 특성 분석 활용 및 데이터 마이닝 기법 등의 활용을 통한 기존 연구들이 있었지만, 영향력이 높은 단일 단어를 활용한 스팸 문자 탐지 기법에 한정되어 있다는 한계점이 있다. 본 논문에서는 싱가폴 대학교에서 공개적으로 공개한 스팸 문자메시지를 다 각도에서 실험 및 분석하여 스팸 문자의 특성을 밝히고 동시출현 단어분석 기반의 스팸 문자 탐지 기법을 제안한다. 성능평가 결과, 제안하는 기법의 거짓 양성과 거짓 음성이 2%미만임을 보였다.

휴대폰의 스팸문자메시지 판별 시스템 (A Spam Message Filter System for Mobile Environment)

  • 이성욱
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.194-196
    • /
    • 2010
  • 휴대폰의 광범위한 보급으로 문자메시지의 사용이 급증하고 있다. 이와 동시에 사용자가 원하지 않는 광고성 스팸문자도 넘쳐나고 있다. 본 연구는 이러한 스팸문자메시지를 자동으로 판별하는 시스템을 개발하는 것이다. 우리는 기계학습방법인 지지벡터기계(Support Vector Machine)을 사용하여 시스템을 학습하였으며 자질의 선택은 카이제곱 통계량을 이용하였다. 실험결과 F1 척도로 약 95.5%의 정확률을 얻었다

  • PDF

한글 문자 단위 서열 정렬을 통한 스팸 문자 필터링 (SPAM Filtering for short Message Using Korean Character Alignment)

  • 임진수;우균
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.1585-1587
    • /
    • 2011
  • 휴대전화 사용이 늘어나면서 이를 노리는 광고 문자 또한 많아지고 있다. 이를 막기 위해 대부분의 휴대전화가 스팸 차단 기능을 제공하고 있다. 허나 현재 제공되고 있는 스팸 차단 기능은 발신 번호가 같거나 설정 문구가 같은 경우에만 막아주는 기초적인 기능뿐이다. 그리고 광고 문자를 보내는 쪽은 이러한 차단 기능을 염두에 두고 변칙적인 문구를 사용해서 보내는 경우도 많다. 본 논문에서는 한글을 문자 단위로 서열 정렬하여 광고 문자를 차단하는 방법을 제안한다. 제안한 방법은 사용자가 등록한 문구를 수신한 문구에 대해 서열 정렬하고 이 결과를 바탕으로 유사도를 비교하여 차단하고자 하는 문구를 지닌 스팸 문자를 최대한 차단할 수 있다.

집합 기반 POI 검색 알고리즘을 활용한 스팸 메시지 판별 모바일 앱 구현 (Implementation of A Mobile Application for Spam SMS Filtering Using Set-Based POI Search Algorithm)

  • 안혜영;조완지;이종우
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권5호
    • /
    • pp.815-822
    • /
    • 2015
  • 최근 스미싱 피해가 늘어남에 따라 스팸 메시지 처리를 위한 애플리케이션이 잇달아 출시되고 있다. 그러나 자음과 모음을 분리하는 등 교묘하게 내용이 조작된 스팸 메시지는 필터링하지 못 하는 경우가 대부분이다. 이를 해결하기 위해 본 논문에서는 문자 메시지 내 스팸 문자열을 검사하는 애플리케이션인 안티스팸을 구현하였다. 안티스팸은 집합 기반 POI 검색 알고리즘을 활용하여, 전송된 문자 메시지내에 스팸 문자열이 있는지 검색한 후, 검색 결과에 따라 스팸 여부를 추정한다. 또한 스팸 필터링을 피하기 위해 교묘히 위장된 스팸 메시지도 걸러준다. 사용자는 메시지를 받으면 스팸 판단 결과와 메시지 내용을 확인하고 메시지 처리방식을 선택할 수 있다.

특수 문자 및 단어 빈도 비율을 이용한 스팸 필터링 방법 (A Spam Filtering Method using Frequency Distribution of Special Letter and Frequency Ratio of Keyword)

  • 이성진;백종법;한정석;이수원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.280-283
    • /
    • 2011
  • 인터넷 환경에서 무차별적으로 유통되는 스팸 문서로 인한 사회적 문제가 커져 가고 있는 가운데 스팸문서를 차단하기 위한 활발한 연구들이 이루어지고 있다. 이 가운데 대표적인 연구는 자질어를 이용한 기계학습 기반의 스팸 차단 기술이다. 그러나 이 방법은 미리 선택된 자질어로만 구성된 분류 모델을 사용하기 때문에 Term Spamming(단어 조작에 의한 스팸 차단 행위)에 취약하며, 스팸 차단의 성능과 학습 소요 시간이 선택된 자질어의 품질과 수에 민감하게 영향을 받는다는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 스팸 문서에서 등장하는 특수 문자의 빈도와 반복되는 단어의 특징을 이용한 스팸 탐지 방법을 제안한다. 제안 방법은 각 문서에서 등장하는 특수 문자의 비율과 최다 출현 단어의 반복 패턴을 정의하고 기계학습 알고리즘을 적용하여 스팸 분류 모델을 생성한다. 제안 방법의 성능 평가를 위해 E-mail 데이터와 블로그의 Post 데이터를 사용하여 자질어 기반의 스팸 차단 방법과 비교 실험을 진행하였다. 실험 결과 본 논문에서 제안하는 방법이 분류 정확도와 학습 소요 시간에 있어 우수한 성능을 보이는 것을 확인하였다.

듀얼 SMS 스팸 필터링: 그래프 기반 자질 가중치 기법 (Dual SMS SPAM Filtering: A Graph-based Feature Weighting Method)

  • 황재원;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.95-99
    • /
    • 2014
  • 본 논문에서는 최근 급속히 증가하여 사회적 이슈가 되고 있는 SMS 스팸 필터링을 위한 듀얼 SMS 스팸필터링 기법을 제안한다. 지속적으로 증가하고 새롭게 변형되는 SMS 문자 필터링을 위해서는 패턴 및 스팸 단어 사전을 통한 필터링은 많은 수작업을 요구하여 부적합하다. 그리하여 기계 학습을 이용한 자동화 시스템 구축이 요구되고 있으며, 효과적인 기계 학습을 위해서는 자질 선택과 자질의 가중치 책정 방법이 중요하다. 하지만 SMS 문자 특성상 문장들이 짧기 때문에 출현하는 자질의 수가 적어 분류의 어려움을 겪게 된다. 이 같은 문제를 개선하기 위하여 본 논문에서는 슬라이딩 윈도우 기반 N-gram 확장을 통해 자질을 확장하고, 확장된 자질로 그래프를 구축하여 얕은 구조적 특징을 표현한다. 학습 데이터에 출현한 N-gram 자질을 정점(Vertex)으로, 자질의 출현 빈도를 그래프의 간선(Edge)의 가중치로 설정하여 햄(HAM)과 스팸(SPAM) 그래프를 각각 구성한다. 이렇게 구성된 그래프를 바탕으로 노드의 중요도와 간선의 가중치를 활용하여 최종적인 자질의 가중치를 결정한다. 입력 문자가 도착하면 스팸과 햄의 그래프를 각각 이용하여 입력 문자의 2개의 자질 벡터(Vector)를 생성한다. 생성된 자질 벡터를 지지 벡터 기계(Support Vector Machine)를 이용하여 각 SVM 확률 값(Probability Score)을 얻어 스팸 여부를 결정한다. 3가지의 실험환경에서 바이그램 자질과 이진 가중치를 사용한 기본 시스템보다 F1-Score의 약 최대 2.7%, 최소 0.5%까지 향상되었으며, 결과적으로 평균 약 1.35%의 성능 향상을 얻을 수 있었다.

  • PDF