• Title/Summary/Keyword: 문자 분할

Search Result 218, Processing Time 0.024 seconds

A License-Plate Image Binarization Algorithm Based on Least Squares Method for License-Plate Recognition of Automobile Black-Box Image (블랙박스 영상용 자동차 번호판 인식을 위한 최소 자승법 기반의 번호판 영상 이진화 알고리즘)

  • Kim, Jin-young;Lim, Jongtae;Heo, Seo Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.747-753
    • /
    • 2018
  • In the license-plate recognition systems for automobile black Image, the license-plate image frequently has a shadow due to outdoor environments which are frequently changing. Such a shadow makes unpredictable errors in the segmentation process of individual characters and numbers of the license plate image, and reduces the overall recognition rate. In this paper, to improve the recognition rate in these circumstance, a license-plate image binarization algorithm is proposed removing the shadow effectively. The propose algorithm splits the license-plate image into the regions with the shadow and without. To find out the boundary of two regions, the algorithm estimates the curve for shadow boundary using the least-squares method. The simulation is performed for the license-plate image having its shadow, and the results show much higher recognition rate than the previous algorithm.

Extracting the Slope and Compensating the Image Using Edges and Image Segmentation in Real World Image (실세계 영상에서 경계선과 영상 분할을 이용한 기울기 검출 및 보정)

  • Paek, Jaegyung;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.441-448
    • /
    • 2016
  • In this paper, we propose a method that segments the image, extracts its slope and compensate it in the image that text and background are mixed. The proposed method uses morphology based preprocessing and extracts the edges using canny operator. And after segmenting the image which the edges are extracted, it excludes the areas which the edges are included, only uses the area which the edges are included and creates the projection histograms according to their various direction slopes. Using them, it takes a slope having the greatest edge concentrativeness of each area and compensates the slope of the scene. On extracting the slope of the mixed scene of the text and background, the method can get better results as 0.7% than the existing methods as it excludes the useless areas that the edges do not exist.

Structure-Adaptive Self-Organizing Neural Network : Application to Hangul Character Recognition (구조적응 자기조직화 신경망 : 한글 문자인식에의 적용)

  • Lee, Kyoung-Mi;Cho, Sung-Bae;Lee, Yill-Byung
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.137-142
    • /
    • 1995
  • 코호넨의 SOFM(Self-Organizing Feature Map)온 빠른 검증 학습이 가능하여 다층 퍼셉트론의 단점을 보완할 수 있는 패턴분류기로 부각되고 있다. 그러나 기본적으로 고정된 크기와 구조의 네트워크를 사용하기 때문에 실재 문제에 적용하기가 쉽지 않다는 문제가 있다. 본 논문에서는 패턴에 대한 사전 정보없이 복잡한 패턴공간을 적응적으로 분할하기 위해 구조적응되는 자기조직화 신경망을 소개하고 이를 인쇄체 한글 문자의 인식에 적용한 결과를 보여준다. 여기에서 제안하는 신경망은 SOFM의 각 셀이 좀더 자세한 SOFM으로 확장될 수 있도록하며, 확률분포가 0인 셀을 제거함으로써 패턴 공간에 보다 근사한 분류를 가능하게 한다. 실제로 이러한 방식이 한글과 같은 복잡한 분류 문제에서 어떻게 작동하는지 설명하고, 한글 완성형 2350자에 대해 실험한 결과를 보여준다.

  • PDF

Printed Name on ID Card recognition using a Hierachical Organized Neural Network (계층적 신경망을 이용한 주민등록증 성명인식)

  • 서원택;조범준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.325-327
    • /
    • 2003
  • 본 논문에서는 인쇄체 한글을 실용적으로 인식할 수 있는 계층적으로 구성한 신경망을 제안하고, 이를 이용해서 주민등록증의 성명을 인식하는데 적용하였다. 문자영상을 신경망을 이용하여 한글의 6가지 유형으로 먼저 분류한 후, 분류된 문자영상을 각 형식에 따라 자소단위로 분할해서 각 형식에 따른 신경망으로 인식하는 구조로 만들었다. 훈련용 데이터는 각 형식 별로 자소를 분리해서 얻은 영상들을 자소별 평균이미지로 만들어서 이를 조합하여 만든 글자로 사용하였다. 그래서 같은 형식의 같은 자음이라도 글자의 모양과 위치가 조금 다른것에 대해서 강인한 훈련을 할 수 있었다. 또한 입력단에서의 잡음을 줄이기 위해 히스토그램의 국부 평균을 적용하였다. 100명의 주민등록증을 컴퓨터 카메라를 이용하여 입력받아서 테스트한 결과 98.1%의 높은 인식률을 얻을 수 있었다.

  • PDF

Development of Handwritten Form Recognition System for Automated Database Construction (DB 자동 구축을 위한 필기 형식문서 인식 시스템의 개발)

  • Kim, Dong-Jun;Cho, Sung-Jung;Ryu, Sung-Ho;Rhee, Taik-Heon;Kim, Jin-Hyung
    • Annual Conference of KIPS
    • /
    • 2000.04a
    • /
    • pp.1047-1050
    • /
    • 2000
  • 형식문서는 현재 정보의 체계화된 표현 및 저장 수단으로서 널리 사용되어 왔다. 최근 이러한 형식문서들을 데이터베이스화해주는 시스템들이 보급되고 있다. 그러나 대부분 외국의 시스템을 기반으로 작성되어 한글, 영어, 숫자, 한자등 다양한 필기 문자들이 사용되는 국내 환경의 특수성을 적절히 반영하지 못하고 있다. 그 결과, 대부분의 경우 아직도 사람이 직접 자료를 입력해야만 한다. 본 논문에서는 이러한 국내 실정에 맞게 다양한 언어의 필기 문자 인식기를 결합하여 형식 문서의 정보를 자동으로 데이터베이스에 입력해 주는 시스템을 제안한다. 제안된 시스템은 영상을 인식한 뒤 그 결과를 검증하는 방법을 통하여 정보의 입력을 보다 효율적으로 수행할 수 있을 뿐 아니라, 전체 작업을 단계별로 분할하여 병렬적으로 수행할 수 있게 함으로써 처리율을 향상시킬 수 있게 하였다.

  • PDF

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

Classification of Korean Character Type using Multi Neural Network and Fuzzy Inference based on Block Partition for Each Type (형식별 블럭분할에 기초한 다중신경망과 퍼지추론에 의한 한글 형식분류)

  • Pyeon, Seok-Beom;Park, Jong-An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.5-11
    • /
    • 1994
  • In this paper, the ciassification of Korean character type using multi neural network and fuzzy inference based on block partition is studied. For the effective classification of a consonant and a vowel, block partition method which devide the region of a consonant and a vowel for each type in the character is proposed. And the partitioned block can be changed according to the each type adaptively. For the improvement of classification rate, the multi neural network with a whole and a part neural network is consisted, and the character type by using fuzzy inference is decided. To verify the validity of the proposed method, computer simulation is accomplished, and from the classification rate $92.6\%$, the effectivity of the method is confirmed.

  • PDF

A Fragmentation and Search Method of Query Document for Partially Plagiarized Section Detection (부분표절구간 검출을 위한 질의문서의 분할 및 탐색 기법)

  • Ock, Chang-Seok;Seo, Jong-Kyu;Cho, Hwan-Gue
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.586-589
    • /
    • 2012
  • 표절과 관련된 이슈가 주목받고 있는 상황에서 표절을 검출하는 방법에 대한 연구가 활발히 진행되고 있다. 일반적으로 표절구간 검출을 위해 복잡한 자연어처리와 같은 의미론적 접근방법이 아닌 비교적 단순한 어휘기반의 문자열 처리 방법을 사용한다. 대표적인 방법으로는 지문법 (Fingerprinting)과 서열정렬 (Sequence alignment) 등이 있다. 하지만 이 방법들을 이용하여 대용량 문서에 대한 표절검사를 수행하기에는 시공간적 복잡도의 문제가 발생한다. 본 논문에서는 이러한 단점을 극복하기 위해 NGS (Next Generation Sequencing)에서 사용하는 BWT (Burrows-Wheeler Transform)[1]를 이용한 탐색방법을 응용한다. 또한 부분표절구간을 검출하고 정확도를 향상시키기 위해 질의문서를 분할하여 작은 조각으로 만든 뒤, 조각들에 대한 질의탐색을 수행한다. 본 논문에서는 질의문서를 분할하는 두 가지 방법을 소개한다. 두 가지 방법은 k-mer analysis를 이용한 방법과 random-split analysis를 이용한 방법으로, 각 방법의 장단점을 실험을 통해 분석하고 실제 부분표절구간의 검출 정확도를 측정하였다.

Restoration of corrupted digit image Using 4-neighborhood mask and projection (4-방향마스크와 프로젝션을 이용한 손상된 문서에서의 숫자 영상 복원)

  • 최선아;윤미진;강동구;김도현;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.670-672
    • /
    • 2002
  • 본 논문에서는 잘못된 인쇄로 인한 문서상의 잡영이나 문자 훼손이 있는 문서를 복원 하고자 만다. 제안하는 방법은 스캐너로 읽어들인 문서영상을 잡영 제거론 만 다음 훼손된 숫자 영상에 대해서 프로젝션을 이용하여 숫자 열을 낱낱의 숫자로 분할한다. 각각의 숫자에 대해서 크기가 일정하도록 정규화를 시킨 다음, Backpropagalion을 이용하여 훼손된 숫자를 학습하였다. 학습시킨 다음 원 영상과 훼손된 영상을 각 픽셀단위로 비교하여 4-방향 마스크를 이용하여 원래의 숫자 영상으로 복원하도록 만다.

  • PDF