• Title/Summary/Keyword: 문맥 반영 방법

Search Result 66, Processing Time 0.025 seconds

Lip-Synch System Optimization Using Class Dependent SCHMM (클래스 종속 반연속 HMM을 이용한 립싱크 시스템 최적화)

  • Lee, Sung-Hee;Park, Jun-Ho;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.7
    • /
    • pp.312-318
    • /
    • 2006
  • The conventional lip-synch system has a two-step process, speech segmentation and recognition. However, the difficulty of speech segmentation procedure and the inaccuracy of training data set due to the segmentation lead to a significant Performance degradation in the system. To cope with that, the connected vowel recognition method using Head-Body-Tail (HBT) model is proposed. The HBT model which is appropriate for handling relatively small sized vocabulary tasks reflects co-articulation effect efficiently. Moreover the 7 vowels are merged into 3 classes having similar lip shape while the system is optimized by employing a class dependent SCHMM structure. Additionally in both end sides of each word which has large variations, 8 components Gaussian mixture model is directly used to improve the ability of representation. Though the proposed method reveals similar performance with respect to the CHMM based on the HBT structure. the number of parameters is reduced by 33.92%. This reduction makes it a computationally efficient method enabling real time operation.

Analysis of an Inaugural Address of Korean Presidents Based on Network (네트워크 기반 대한민국 대통령 취임사 분석)

  • Kim, Hak Yong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.67-68
    • /
    • 2013
  • 초대 이승만 대통령으로부터 제18대 박근혜 대통령 취임사를 네트워크 기반으로 분석하였다. 연합뉴스에서 제공하는 데이터베이스는 역대 대통령 취임사 단어구름으로 보여줌으로써 키워드를 파악할 수 있도록 하였다. 이 경우 특정 단어의 등장 횟수에 비례하여 중심 단어를 찾아주기 때문에 취임사 전체에 흐르는 문맥이나 대통령의 의중을 반영하지 못한다. 이러한 문제를 해결하기 위하여 본 연구에서 18개 대통령 취임사에 등장하는 키워드 네트워크를 구축하였다. 네트워크상에서 허브(hub)에 해당하는 단어를 연결하면 대통령의 의도나 통치 방향을 파악할 수 있다. 대한민국의 18개 대통령 취임사는 네트워크의 동적 변화를 분석할 수 있는 좋은 자료다. 초대 취임사 네트워크에 두 번째 취임사 네트워크를 추가하여 점진적으로 확장되는 네트워크를 구축하여 동적변화를 분석하였다. 네트워크 동적 분석 결과는 시대의 흐름에 따른 대통령 통치 방향과 변화가 담겨져 있기에 대한민국 현대사 흐름을 파악하는데 기여하는 것으로 나타났다. 이제 복잡계를 이해하는 방법의 하나인 네트워크에 관한 연구는 사회현상, 자연현상, 생명현상을 넘어서 대통령 취임사에 이르기까지 다양한 영역에 함축된 복잡한 현상을 이해하려는 시도에 방법론적 실마리를 제공하고 있다.

  • PDF

Design of Java virtual machine scheduler using component analysis queue (컴포넌트 분석 큐를 적용한 자바 가상머신 스케줄러 설계)

  • Ki, Young-Tek;Lee, Sung-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05c
    • /
    • pp.1797-1800
    • /
    • 2003
  • 내장형 시스템 환경에서는 급변하는 시장의 적시성 요구(time-to-market)와 저렴한 비용으로 다양한 사용자의 요구사항을 효율적으로 반영해야 한다. 그러한 특징에 의해 내장형 시스템 환경에서는 재구성 가능한 컴포넌트 기반 소프트웨어 개발방법이 주목받고 있다. 또한 내장형 시스템 소프트웨어 개발에는 이식성, 신뢰성, 재사용성에서 강점을 가진 자바 가상머신이 주목받고 있다. 따라서 본 논문에서는 컴포넌트 기반 내장형 자바 가상머신에 적합한 스케줄러를 개발하기 위해, 추상 컴포넌트 조림기법과 의존성 검사 방법을 적용한 컴포넌트 스케줄링 큐를 적용하여, 컴포넌트간의 문맥교환을 줄여 수행성능을 향상시킨 스케줄러의 설계 기법에 대하여 소개한다.

  • PDF

Emotion Classification in Dialogues Using Embedding Features (임베딩 자질을 이용한 대화의 감정 분류)

  • Shin, Dong-Won;Lee, Yeon-Soo;Jang, Jung-Sun;Lim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.109-114
    • /
    • 2015
  • 대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.

  • PDF

Categorization of POIs Using Word and Context information (관심 지점 명칭의 단어와 문맥 정보를 활용한 관심 지점의 분류)

  • Choi, Su Jeong;Park, Seong-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.470-476
    • /
    • 2014
  • A point of interest is a specific point location such as a cafe, a gallery, a shop, or a park. It consists of a name, a category, a location, and so on. Its information is necessary for location-based application, above all category is basic information. However, category information should be automatically gathered because it costs high to gather it manually. In this paper, we propose a novel method to estimate category of POIs automatically using an inner word and local context. An inner word is a word that contains POI's name. Their name sometimes expose category information. Thus, their name is used as inner word information in estimating category of POIs. Local context information means words around a POI's name in a document that mentioned the name. The context include information to estimate category. The evaluation of the proposed method is performed on two data sets. According to the experimental results, proposed model using combination inner word and local context show higher accuracy than that of model using each.

Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature (온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구)

  • Jin, Seunghee;Jang, Heewon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.253-266
    • /
    • 2018
  • This paper proposes a methodology applying sequence tagging methodology to improve the performance of NER(Named Entity Recognition) used in QA system. In order to retrieve the correct answers stored in the database, it is necessary to switch the user's query into a language of the database such as SQL(Structured Query Language). Then, the computer can recognize the language of the user. This is the process of identifying the class or data name contained in the database. The method of retrieving the words contained in the query in the existing database and recognizing the object does not identify the homophone and the word phrases because it does not consider the context of the user's query. If there are multiple search results, all of them are returned as a result, so there can be many interpretations on the query and the time complexity for the calculation becomes large. To overcome these, this study aims to solve this problem by reflecting the contextual meaning of the query using Bidirectional LSTM-CRF. Also we tried to solve the disadvantages of the neural network model which can't identify the untrained words by using ontology knowledge based feature. Experiments were conducted on the ontology knowledge base of music domain and the performance was evaluated. In order to accurately evaluate the performance of the L-Bidirectional LSTM-CRF proposed in this study, we experimented with converting the words included in the learned query into untrained words in order to test whether the words were included in the database but correctly identified the untrained words. As a result, it was possible to recognize objects considering the context and can recognize the untrained words without re-training the L-Bidirectional LSTM-CRF mode, and it is confirmed that the performance of the object recognition as a whole is improved.

Query Expansion based on Word Graph using Term Proximity (질의 어휘와의 근접도를 반영한 단어 그래프 기반 질의 확장)

  • Jang, Kye-Hun;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.37-42
    • /
    • 2012
  • The pseudo relevance feedback suggests that frequent words at the top documents are related to initial query. However, the main drawback associated with the term frequency method is the fact that it relies on feature independence, and disregards any dependencies that may exist between words in the text. In this paper, we propose query expansion based on word graph using term proximity. It supplements term frequency method. On TREC WT10g test collection, experimental results in MAP(Mean Average Precision) show that the proposed method achieved 6.4% improvement over language model.

SimKoR: A Sentence Similarity Dataset based on Korean Review Data and Its Application to Contrastive Learning for NLP (SimKoR: 한국어 리뷰 데이터를 활용한 문장 유사도 데이터셋 제안 및 대조학습에서의 활용 방안 )

  • Jaemin Kim;Yohan Na;Kangmin Kim;Sang Rak Lee;Dong-Kyu Chae
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.245-248
    • /
    • 2022
  • 최근 자연어 처리 분야에서 문맥적 의미를 반영하기 위한 대조학습 (contrastive learning) 에 대한 연구가 활발히 이뤄지고 있다. 이 때 대조학습을 위한 양질의 학습 (training) 데이터와 검증 (validation) 데이터를 이용하는 것이 중요하다. 그러나 한국어의 경우 대다수의 데이터셋이 영어로 된 데이터를 한국어로 기계 번역하여 검토 후 제공되는 데이터셋 밖에 존재하지 않는다. 이는 기계번역의 성능에 의존하는 단점을 갖고 있다. 본 논문에서는 한국어 리뷰 데이터로 임베딩의 의미 반영 정도를 측정할 수 있는 간단한 검증 데이터셋 구축 방법을 제안하고, 이를 활용한 데이터셋인 SimKoR (Similarity Korean Review dataset) 을 제안한다. 제안하는 검증 데이터셋을 이용해서 대조학습을 수행하고 효과성을 보인다.

  • PDF

Reference-based Utterance Generation Model using Multi-turn Dialogue (멀티턴 대화를 활용한 레퍼런스 기반의 발화 생성 모델)

  • Sangmin Park;Yuri Son;Bitna Keum;Hongjin Kim;Harksoo Kim;Jaieun Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.88-91
    • /
    • 2022
  • 디지털 휴먼, 민원 상담, ARS 등 칫챗의 활용과 수요가 증가함에 따라 칫챗의 성능 향상을 위한 다양한 연구가 진행되고 있다. 특히, 오토 인코더(Auto-encoder) 기반의 생성 모델(Generative Model)은 높은 성능을 보이며 지속적인 연구가 이루어지고 있으나, 이전 대화들에 대한 충분한 문맥 정보의 반영이 어렵고 문법적으로 부적절한 답변을 생성하는 문제가 있다. 이를 개선하기 위해 검색 기반의 생성 모델과 관련된 연구가 진행되고 있으나, 현재 시점의 문장이 유사해도 이전 문장들에 따라 의도와 답변이 달라지는 멀티턴 대화 특징을 반영하여 대화를 검색하는 연구가 부족하다. 본 논문에서는 이와 같은 멀티턴 대화의 특징이 고려된 검색 방법을 제안하고 검색된 레퍼런스(준정답 문장)를 멀티턴 대화와 함께 생성 모델의 입력으로 활용하여 학습시키는 방안을 제안한다. 제안 방안으로 학습된 발화 생성 모델은 기존 모델과 비교 평가를 수행하며 Rouge-1 스코어에서 13.11점, Rouge-2 스코어에서 10.09점 Rouge-L 스코어에서 13.2점 향상된 성능을 보였고 이를 통해 제안 방안의 우수성을 입증하였다.

  • PDF

Construction of LGG for Extracting Meeting Location (개최장소 추출을 위한 LGG의 구축)

  • Kim, Kyoung-Ryol;Choi, Dong-Hyun;Kim, Eun-Kyung;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.49-54
    • /
    • 2011
  • 본 논문에서는 회의공지 이메일을 대상으로 하는 개최장소 추출시스템에 대하여 소개한다. 개최장소 추출 시스템은 두 단계로 구성되는데, 첫 번째 단계는 본문에 포함된 개최장소의 추출이고, 두 번째 단계는 추출된 개최장소의 Geocoding이다. 개최장소의 추출을 위하여 문맥 패턴을 분석하여 개최장소가 포함된 문장 주변의 패턴을 반영하는 Local-Grammar Graph를 구축하며, 개최장소의 Geocoding을 위하여는 Addr2Geocode API를 사용한다. 본 논문은 일정공지메일의 개최장소를 추출하기 위한 LGG 방법론 기반의 어휘-통사적 언어 정보를 기술하는 것을 목적으로 한다.

  • PDF