• Title/Summary/Keyword: 문맥정보

Search Result 661, Processing Time 0.027 seconds

Analysis of the Framework for the Policy-Based Adaptive Applications (정책 기반 적응형 어플리케이션을 위한 프레임워크 분석)

  • Kim So-Young;Moon Mi-Kyeong;Yeom Keun-Hyuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06d
    • /
    • pp.274-276
    • /
    • 2006
  • 유비쿼터스 소프트웨어 개발에 대한 연구가 활발히 진행되고 있는 가운데 여러 개발 프레임워크가 제안되고 있다. 유비쿼터스 환경에서는 문맥 정보가 중요하게 인식되고 있고 문맥정보를 제공하는 자원은 개발 도메인에 따라 다양하다. 또한 유비쿼터스내의 여러 요소들은 동적인 특성을 가지고 있다. 이러한 유비쿼터스 환경에 맞는 소프트웨어를 프레임워크의 도움 없이 개발하는 데는 많은 시간과 비용이 든다. 따라서 본 논문에서는 일반적인 유비쿼터스 환경에서 동적으로 적응 가능하도록 하는 정책 기반 적응형 어플리케이션을 위한 프레 임워크를 분석, 제시한다.

  • PDF

Korean BaseNP Identification using the variation of context length and position (문맥 윈도우의 크기와 위치 변화를 이용한 한국어 기반 명사구 인식)

  • 전수영;강인호;김길창
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.454-456
    • /
    • 2002
  • 한국어의 비재귀 명사구 즉 기반 명사구(basehp)를 인식하는 알고리즘을 제시한다. 본 논문에서는 한개의 주어진 학습 알고리즘에 대해 문맥 윈도우의 크기와 문맥 윈도우의 위치를 달리해 가면서 학습시킨다 이러한 방법을 통해 서로 다른 정보를 바탕으로 한 기반 명사구 인식을 수행할 수 있으며, 그 결과서로 다른 여러 개의 결과들을 생성할 수 있다. 본 논문에에서는 이렇게 얻어진 여러 개의 인식 결과들을 적절한 방법으로 결합하여 한국어에서 91% 이상의 높은 기반명사구 인식 정확도를 얻어낼 수 있다. 15만 단어 규모의 국어정보베이스의 말뭉치를 사용했으며 , 학습 알고리즘으로는 메모리 기반 학습 알고리즘 (memory-based learning)을 이용하여 실험하였다.

  • PDF

Improving the Performance of Statistical Context-Sensitive Spelling Error Correction Techniques Using Default Operation Algorithm (Default 연산 알고리즘을 적용한 통계적 문맥의존 철자오류 교정 기법의 성능 향상)

  • Lee, Jung-Hun;Kim, Minho;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.165-170
    • /
    • 2016
  • 본 논문에서 제안하는 문맥의존 철자오류 교정은 통계 정보를 이용한 방법으로 통계적 언어처리에서 가장 널리 쓰이는 샤논(Shannon)이 발표한 노이지 채널 모형(noisy channel model)을 기반으로 한다. 선행연구에서 부족하였던 부분의 성능 향상을 위해 교정대상단어의 오류생성 및 통계 데이터의 저장 방식을 개선하여 Default 연산을 적용한 모델을 제안한다. 선행 연구의 모델은 교정대상단어의 오류생성 시 편집거리의 제약을 1로 하여 교정 실험을 하지만 제안한 모델은 같은 환경에서 더욱 높은 검출과 정확도를 보였으며, 오류단어의 편집거리(edit distance) 제약을 넓게 적용하더라도 신뢰도가 있는 검출과 교정을 보였다.

  • PDF

An Efficiency Analysis Method of Self-adaptive software based Scenario (시나리오 기반 자기적응형 소프트웨어의 효율적인 분석 방안)

  • Su-jin baek;Young-jae Song
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.492-495
    • /
    • 2008
  • 기존 컴퓨팅 패러다임에서는 고정된 환경을 가정하여 소프트웨어를 설계하였으므로 급속한 시장 환경의 변화와 소비자의 불확실한 요구조건에 대응하여 개발하기에 어려움이 있다. 따라서 외부 환경의 변화를 직면하였을 때 동작을 멈추는 것이 아니라 그 변화를 감지하고 대안을 선택하여 지속적으로 서비스를 제공할 수 있는 자기 적응형 소프트웨어가 필요하다. 그러나 기존의 자기적응형 소프트웨어에 대한 연구는 적응형 소프트웨어에 영향을 주는 문맥정보를 모델링하는 기법이나 적응을 위해 대체할 수 있는 기능들을 찾아내는 방법에 대한 연구가 부족한 실정이다. 이 문제를 해결하기 위해 본 논문은 시나리오를 이용한 목표 기반으로 분석을 하고, 분석된 요구사항의 가변 수와 크기에 따라 프로그램의 문법뿐 아니라 사용자의 관점에서도 의미 있도록 프로그램 동적 슬라이싱 기법을 적용하도록 한다. 또한, 제안된 방법이 전 과정에 문맥에 대한 분석, 설계 정보가 반영되어 동적으로 재구성하는 방법을 제시하도록 한다.

Context-Weighted Metrics for Example Matching (문맥가중치가 반영된 문장 유사 척도)

  • Kim, Dong-Joo;Kim, Han-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.43-51
    • /
    • 2006
  • This paper proposes a metrics for example matching under the example-based machine translation for English-Korean machine translation. Our metrics served as similarity measure is based on edit-distance algorithm, and it is employed to retrieve the most similar example sentences to a given query. Basically it makes use of simple information such as lemma and part-of-speech information of typographically mismatched words. Edit-distance algorithm cannot fully reflect the context of matched word units. In other words, only if matched word units are ordered, it is considered that the contribution of full matching context to similarity is identical to that of partial matching context for the sequence of words in which mismatching word units are intervened. To overcome this drawback, we propose the context-weighting scheme that uses the contiguity information of matched word units to catch the full context. To change the edit-distance metrics representing dissimilarity to similarity metrics, to apply this context-weighted metrics to the example matching problem and also to rank by similarity, we normalize it. In addition, we generalize previous methods using some linguistic information to one representative system. In order to verify the correctness of the proposed context-weighted metrics, we carry out the experiment to compare it with generalized previous methods.

Improving Recall for Context-Sensitive Spelling Correction Rules using Conditional Probability Model with Dynamic Window Sizes (동적 윈도우를 갖는 조건부확률 모델을 이용한 한국어 문맥의존 철자오류 교정 규칙의 재현율 향상)

  • Choi, Hyunsoo;Kwon, Hyukchul;Yoon, Aesun
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.629-636
    • /
    • 2015
  • The types of errors corrected by a Korean spelling and grammar checker can be classified into isolated-term spelling errors and context-sensitive spelling errors (CSSE). CSSEs are difficult to detect and to correct, since they are correct words when examined alone. Thus, they can be corrected only by considering the semantic and syntactic relations to their context. CSSEs, which are frequently made even by expert wiriters, significantly affect the reliability of spelling and grammar checkers. An existing Korean spelling and grammar checker developed by P University (KSGC 4.5) adopts hand-made correction rules for correcting CSSEs. The KSGC 4.5 is designed to obtain very high precision, which results in an extremely low recall. Our overall goal of previous works was to improve the recall without considerably lowering the precision, by generalizing CSSE correction rules that mainly depend on linguistic knowledge. A variety of rule-based methods has been proposed in previous works, and the best performance showed 95.19% of average precision and 37.56% of recall. This study thus proposes a statistics based method using a conditional probability model with dynamic window sizes. in order to further improve the recall. The proposed method obtained 97.23% of average precision and 50.50% of recall.

Multi-level Attention Fusion Network for Machine Reading Comprehension (Multi-level Attention Fusion을 이용한 기계독해)

  • Park, Kwang-Hyeon;Na, Seung-Hoon;Choi, Yun-Su;Chang, Du-Seong
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.259-262
    • /
    • 2018
  • 기계독해의 목표는 기계가 주어진 문맥을 이해하고 문맥에 대한 질문에 대답할 수 있도록 하는 것이다. 본 논문에서는 Multi-level Attention에 정보를 효율적으로 융합 수 있는 Fusion 함수를 결합하고, Answer module에Stochastic multi-step answer를 적용하여 SQuAD dev 데이터 셋에서 EM=78.63%, F1=86.36%의 성능을 보였다.

  • PDF

Hangul-Hanja Transfer for Terminology (전문용어 한글-한자 자동 변환)

  • 황금하;배선미;최기선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.886-888
    • /
    • 2004
  • 기존의 한글-안자 변환에서는 문맥정보와 통계정보를 고려하지 않는 사전기반의 단어단위 변환 방법을 사용한 반면, 본 논문에서는 언어모델 밀 변환모델을 이용한 문장단위의 한자 자동변환 방법을 제안하고. 사전 미등록어와 복합어의 한글-한자 변환을 위하여 단어분할을 변환의 숨김 과정으로 처리하는 통합모델을 사용하였다. 실험 결과, 전문용어의 한글-한자 변환에서 제한된 한자 데이터를 이용하여 기존의 사전기반 변환보다 나은 결과를 얻을 수 있었다.

  • PDF

Self-adaptation Service with Context-awareness on Active Network for Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경을 위한 액티브네트워크상의 문맥인식성을 고려한 자치 적응성 서비스)

  • Hong Sungjune;Han Sunyoung
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.6
    • /
    • pp.633-642
    • /
    • 2004
  • A self-adaptation with context-awareness is needed within network to meet costumed services according a user's changing constraints. But the existing network has many difficulty in adding new functions because of slow standardization of network and slow deployment of new services. To solve this problem, an active network can support the suitable environment to add new function such as self- adaptation. Therefore, this Paper suggests Self Adaptation Service(SAS) using agent-based active network and the constraint-based Service Creation Environment(SCE) to support self-adaptation with context-awareness. SAS provides benefits to support the context-aware service and the fast deployment of new services.

Improving the Performance of Statistical Context-Sensitive Spelling Error Correction Techniques Using Default Operation Algorithm (Default 연산 알고리즘을 적용한 통계적 문맥의존 철자오류 교정 기법의 성능 향상)

  • Lee, Jung-Hun;Kim, Minho;Kwon, Hyuk-Chul
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.165-170
    • /
    • 2016
  • 본 논문에서 제안하는 문맥의존 철자오류 교정은 통계 정보를 이용한 방법으로 통계적 언어처리에서 가장 널리 쓰이는 샤논(Shannon)이 발표한 노이지 채널 모형(noisy channel model)을 기반으로 한다. 선행연구에서 부족하였던 부분의 성능 향상을 위해 교정대상단어의 오류생성 및 통계 데이터의 저장 방식을 개선하여 Default 연산을 적용한 모델을 제안한다. 선행 연구의 모델은 교정대상단어의 오류생성 시 편집거리의 제약을 1로 하여 교정 실험을 하지만 제안한 모델은 같은 환경에서 더욱 높은 검출과 정확도를 보였으며, 오류단어의 편집거리(edit distance) 제약을 넓게 적용하더라도 신뢰도가 있는 검출과 교정을 보였다.

  • PDF