Proceedings of the Korean Information Science Society Conference
/
2006.06d
/
pp.274-276
/
2006
유비쿼터스 소프트웨어 개발에 대한 연구가 활발히 진행되고 있는 가운데 여러 개발 프레임워크가 제안되고 있다. 유비쿼터스 환경에서는 문맥 정보가 중요하게 인식되고 있고 문맥정보를 제공하는 자원은 개발 도메인에 따라 다양하다. 또한 유비쿼터스내의 여러 요소들은 동적인 특성을 가지고 있다. 이러한 유비쿼터스 환경에 맞는 소프트웨어를 프레임워크의 도움 없이 개발하는 데는 많은 시간과 비용이 든다. 따라서 본 논문에서는 일반적인 유비쿼터스 환경에서 동적으로 적응 가능하도록 하는 정책 기반 적응형 어플리케이션을 위한 프레 임워크를 분석, 제시한다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.454-456
/
2002
한국어의 비재귀 명사구 즉 기반 명사구(basehp)를 인식하는 알고리즘을 제시한다. 본 논문에서는 한개의 주어진 학습 알고리즘에 대해 문맥 윈도우의 크기와 문맥 윈도우의 위치를 달리해 가면서 학습시킨다 이러한 방법을 통해 서로 다른 정보를 바탕으로 한 기반 명사구 인식을 수행할 수 있으며, 그 결과서로 다른 여러 개의 결과들을 생성할 수 있다. 본 논문에에서는 이렇게 얻어진 여러 개의 인식 결과들을 적절한 방법으로 결합하여 한국어에서 91% 이상의 높은 기반명사구 인식 정확도를 얻어낼 수 있다. 15만 단어 규모의 국어정보베이스의 말뭉치를 사용했으며 , 학습 알고리즘으로는 메모리 기반 학습 알고리즘 (memory-based learning)을 이용하여 실험하였다.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.165-170
/
2016
본 논문에서 제안하는 문맥의존 철자오류 교정은 통계 정보를 이용한 방법으로 통계적 언어처리에서 가장 널리 쓰이는 샤논(Shannon)이 발표한 노이지 채널 모형(noisy channel model)을 기반으로 한다. 선행연구에서 부족하였던 부분의 성능 향상을 위해 교정대상단어의 오류생성 및 통계 데이터의 저장 방식을 개선하여 Default 연산을 적용한 모델을 제안한다. 선행 연구의 모델은 교정대상단어의 오류생성 시 편집거리의 제약을 1로 하여 교정 실험을 하지만 제안한 모델은 같은 환경에서 더욱 높은 검출과 정확도를 보였으며, 오류단어의 편집거리(edit distance) 제약을 넓게 적용하더라도 신뢰도가 있는 검출과 교정을 보였다.
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.492-495
/
2008
기존 컴퓨팅 패러다임에서는 고정된 환경을 가정하여 소프트웨어를 설계하였으므로 급속한 시장 환경의 변화와 소비자의 불확실한 요구조건에 대응하여 개발하기에 어려움이 있다. 따라서 외부 환경의 변화를 직면하였을 때 동작을 멈추는 것이 아니라 그 변화를 감지하고 대안을 선택하여 지속적으로 서비스를 제공할 수 있는 자기 적응형 소프트웨어가 필요하다. 그러나 기존의 자기적응형 소프트웨어에 대한 연구는 적응형 소프트웨어에 영향을 주는 문맥정보를 모델링하는 기법이나 적응을 위해 대체할 수 있는 기능들을 찾아내는 방법에 대한 연구가 부족한 실정이다. 이 문제를 해결하기 위해 본 논문은 시나리오를 이용한 목표 기반으로 분석을 하고, 분석된 요구사항의 가변 수와 크기에 따라 프로그램의 문법뿐 아니라 사용자의 관점에서도 의미 있도록 프로그램 동적 슬라이싱 기법을 적용하도록 한다. 또한, 제안된 방법이 전 과정에 문맥에 대한 분석, 설계 정보가 반영되어 동적으로 재구성하는 방법을 제시하도록 한다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.6
s.312
/
pp.43-51
/
2006
This paper proposes a metrics for example matching under the example-based machine translation for English-Korean machine translation. Our metrics served as similarity measure is based on edit-distance algorithm, and it is employed to retrieve the most similar example sentences to a given query. Basically it makes use of simple information such as lemma and part-of-speech information of typographically mismatched words. Edit-distance algorithm cannot fully reflect the context of matched word units. In other words, only if matched word units are ordered, it is considered that the contribution of full matching context to similarity is identical to that of partial matching context for the sequence of words in which mismatching word units are intervened. To overcome this drawback, we propose the context-weighting scheme that uses the contiguity information of matched word units to catch the full context. To change the edit-distance metrics representing dissimilarity to similarity metrics, to apply this context-weighted metrics to the example matching problem and also to rank by similarity, we normalize it. In addition, we generalize previous methods using some linguistic information to one representative system. In order to verify the correctness of the proposed context-weighted metrics, we carry out the experiment to compare it with generalized previous methods.
The types of errors corrected by a Korean spelling and grammar checker can be classified into isolated-term spelling errors and context-sensitive spelling errors (CSSE). CSSEs are difficult to detect and to correct, since they are correct words when examined alone. Thus, they can be corrected only by considering the semantic and syntactic relations to their context. CSSEs, which are frequently made even by expert wiriters, significantly affect the reliability of spelling and grammar checkers. An existing Korean spelling and grammar checker developed by P University (KSGC 4.5) adopts hand-made correction rules for correcting CSSEs. The KSGC 4.5 is designed to obtain very high precision, which results in an extremely low recall. Our overall goal of previous works was to improve the recall without considerably lowering the precision, by generalizing CSSE correction rules that mainly depend on linguistic knowledge. A variety of rule-based methods has been proposed in previous works, and the best performance showed 95.19% of average precision and 37.56% of recall. This study thus proposes a statistics based method using a conditional probability model with dynamic window sizes. in order to further improve the recall. The proposed method obtained 97.23% of average precision and 50.50% of recall.
Park, Kwang-Hyeon;Na, Seung-Hoon;Choi, Yun-Su;Chang, Du-Seong
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.259-262
/
2018
기계독해의 목표는 기계가 주어진 문맥을 이해하고 문맥에 대한 질문에 대답할 수 있도록 하는 것이다. 본 논문에서는 Multi-level Attention에 정보를 효율적으로 융합 수 있는 Fusion 함수를 결합하고, Answer module에Stochastic multi-step answer를 적용하여 SQuAD dev 데이터 셋에서 EM=78.63%, F1=86.36%의 성능을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.886-888
/
2004
기존의 한글-안자 변환에서는 문맥정보와 통계정보를 고려하지 않는 사전기반의 단어단위 변환 방법을 사용한 반면, 본 논문에서는 언어모델 밀 변환모델을 이용한 문장단위의 한자 자동변환 방법을 제안하고. 사전 미등록어와 복합어의 한글-한자 변환을 위하여 단어분할을 변환의 숨김 과정으로 처리하는 통합모델을 사용하였다. 실험 결과, 전문용어의 한글-한자 변환에서 제한된 한자 데이터를 이용하여 기존의 사전기반 변환보다 나은 결과를 얻을 수 있었다.
A self-adaptation with context-awareness is needed within network to meet costumed services according a user's changing constraints. But the existing network has many difficulty in adding new functions because of slow standardization of network and slow deployment of new services. To solve this problem, an active network can support the suitable environment to add new function such as self- adaptation. Therefore, this Paper suggests Self Adaptation Service(SAS) using agent-based active network and the constraint-based Service Creation Environment(SCE) to support self-adaptation with context-awareness. SAS provides benefits to support the context-aware service and the fast deployment of new services.
본 논문에서 제안하는 문맥의존 철자오류 교정은 통계 정보를 이용한 방법으로 통계적 언어처리에서 가장 널리 쓰이는 샤논(Shannon)이 발표한 노이지 채널 모형(noisy channel model)을 기반으로 한다. 선행연구에서 부족하였던 부분의 성능 향상을 위해 교정대상단어의 오류생성 및 통계 데이터의 저장 방식을 개선하여 Default 연산을 적용한 모델을 제안한다. 선행 연구의 모델은 교정대상단어의 오류생성 시 편집거리의 제약을 1로 하여 교정 실험을 하지만 제안한 모델은 같은 환경에서 더욱 높은 검출과 정확도를 보였으며, 오류단어의 편집거리(edit distance) 제약을 넓게 적용하더라도 신뢰도가 있는 검출과 교정을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.