• Title/Summary/Keyword: 문맥정보

Search Result 661, Processing Time 0.024 seconds

Merging Context Information and Recognition Result for Robust Speech Recognition in Noisy Environments (잡음 환경에서의 강인한 음성인식을 위한 문맥 정보와 음성인식 결과의 융합)

  • Song, Won-Moon;Kim, Eun-Ju;Kim, Myung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.733-735
    • /
    • 2005
  • 최근 음성인식 분야 에서는 잡음 환경에서 좀 더 신뢰도 높은 음성 인식 결과물 얻기 위하여 인식 결과 도출 단계에서 여러 가지 정보를 융합 하는 방법이나 인식결과를 후처리 하여 새로운 결과를 얻어 내는 방법들이 연구 되고 있다. 본 논문에서는 개인 모바일 기기에서의 음성 인식 환경에서 사용자의 발화 패턴 정보를 가지는 문맥 정보를 활용함으로서 잡음 환경에서의 음성 정보 손실에 따른 인식률 하락을 보완하는 방법을 제안한다. 먼저 사용자의 기기 사용 로그나 발화 로그 정보로부터 특정 명령어들의 순차적 발화 패턴을 마이닝하여 문맥 정보를 구성한다. 이 후 음성 발화시에 인식기의 최종 인식 결과에 대한 신뢰도가 떨어진다고 판단될 때 앞서 얻어진 문맥 정보의 신뢰도를 인식기의 각 후보단어들의 인식률과 융합하여 새로운 인식 결과를 도출해 낸다. 이러한 과정에서 인식기 결과에 대한 신뢰성을 판단하는 기준을 실험을 통하여 결정 하였으며 신뢰성이 기준 이하일 경우의 융합 과정을 위하여 후보 단어 인식률과 문맥정보를 적절히 융합할 수 있는 방법을 제안한다.

  • PDF

Improving Recall for Context-Sensitive Spelling Correction Rules by Combining Rule-Generalization and Statistical Method (규칙의 일반화와 통계 방식을 결합한 한국어 문맥의존 철자오류 교정규칙의 재현율 향상)

  • Choi, Hyun-Soo;Kwon, Hyuk-Chul;Yoon, Aesun
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.18-23
    • /
    • 2014
  • 한국어 맞춤법 검사기는 전자화된 한국어 텍스트에 나타난 오류어를 검색하여 이를 교정할 대치어를 제시하는 시스템이다. 이때 오류어의 유형은 크게 단순 철자오류와 문맥의존 철자오류로 구분할 수 있다. 이중 문맥의존 철자오류는 어절(word)단위로 봤을 때는 정확하지만, 문맥을 고려하였을 때 오류가 되는 유형으로 교정 난도가 매우 높다. 문맥의존 철자오류의 교정 방법은 크게 규칙을 이용한 방법과 통계 정보에 기반을 둔 방법으로 나뉜다. 이때 규칙을 이용한 방법은 그 특성상 정확도가 매우 높지만, 반대로 재현율이 매우 낮다. 본 논문에서는 본 연구진이 기존에 연구하였던 규칙을 일반화하는 방식에 추가로 조건부 확률을 이용한 통계 방식을 결합하여 정확도를 유지하면서 재현율을 향상시키는 방법을 제안한다.

  • PDF

Identifying Optimum Features for Abbreviation Disambiguation in Biomedical Domain (생의학 도메인에서 약어 중의성 해결을 위한 최적 자질의 규명)

  • Lim, Ho-Gun;Seo, Hee-Cheol;Kim, Seon-Ho;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.173-180
    • /
    • 2004
  • 생의학 도메인에서 약어 중의성 해결이란 생의학 문서에 나타난 약어의 원래 형태(long form)를 판별하는 작업이다. 본 논문은 생의학 도메인에서 약어 중의성 해결에 적합한 자질들을 실험적으로 탐색하는데 목적이 있다. 이를 위해서 약어 중의성 해결에 사용할 문맥을 전역 문맥(topical context)과 지역 문맥(local context)으로 구분하고, 각각의 문맥에서 스테밍(stemming), 불용어 제거, 품사 부착 등의 과정을 통해서 다양한 자질들을 고려하도록 한다. 생의학 도메인에서 약어 중의성 해결을 위한 실험 자료의 부족을 해결하기 위해서, 학습 자료와 평가 자료를 자동으로 구축했으며, 평가를 위한 약어로는 기존 연구에서 사용된 두 가지 약어 목록을 사용했다. 또한 단순 베이지언 모델(Naive Bayesian Model)을 이용해서 각 자질들의 유용성을 평가하였다 실험 결과, 전역 문맥이 지역 문맥보다 더 좋은 성능을 보였으며, 전역 문맥에서는 불용어만을 제거한 경우가 각각의 평가 자료에서 94.2%와 96.2%로 가장 좋은 결과를 보였으며, 전역 문맥과 지역 문맥을 함께 사용하는 경우에 각각의 평가 자료에서 1.8%와 0.3%의 성능 향상이 있었다.

  • PDF

Self-Organizing n-gram Model for Automatic Word Spacing (자기 조직화 n-gram모델을 이용한 자동 띄어쓰기)

  • Tae, Yoon-Shik;Park, Seong-Bae;Lee, Sang-Jo;Park, Se-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.125-132
    • /
    • 2006
  • 한국어의 자연어처리 및 정보검색분야에서 자동 띄어쓰기는 매우 중요한 문제이다. 신문기사에서조차 잘못된 띄어쓰기를 발견할 수 있을 정도로 띄어쓰기가 어려운 경우가 많다. 본 논문에서는 자기 조직화 n-gram모델을 이용해 자동 띄어쓰기의 정확도를 높이는 방법을 제안한다. 본 논문에서 제안하는 방법은 문맥의 길이를 바꿀 수 있는 가변길이 n-gram모델을 기본으로 하여 모델이 자동으로 문맥의 길이를 결정하도록 한 것으로, 일반적인 n-gram모델에 비해 더욱 높은 성능을 얻을 수 있다. 자기조직화 n-gram모델은 최적의 문맥의 길이를 찾기 위해 문맥의 길이를 늘였을 때 나타나는 확률분포와 문맥의 길이를 늘이지 않았을 태의 확률분포를 비교하여 그 차이가 크다면 문맥의 길이를 늘이고, 그렇지 않다면 문맥의 길이를 자동으로 줄인다. 즉, 더 많은 정보가 필요한 경우는 데이터의 차원을 높여 정확도를 올리며, 이로 인해 증가된 계산량은 필요 없는 데이터의 양을 줄임으로써 줄일 수 있다. 본 논문에서는 실험을 통해 n-gram모델의 자기 조직화 구조가 기본적인 모델보다 성능이 뛰어나다는 것을 확인하였다.

  • PDF

The open API for reconfiguration in 4G network (4G network에서 재구성성을 위한 개방형 API)

  • Hong Sung-June;Lee Young-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.219-226
    • /
    • 2005
  • This paper describes the open API with integration of semantic web service with PARLAY X based open API in 4G mobile network. It can be expected that the intelligence such as the context-awareness, adaptation and personalization in 4G mobile network will be deployed. But the existing PARLAY based network lacks in considering context-awareness, adaptation and personalization. Therefore, the object of this paper is to support the architecture and the Application Programming Interface (API) of the network service for the context-awareness, adaptation and Personalization in 4G mobile network The open API is to provide users with the adaptive network service to the changing context constraints as well as detecting the changing context and user's Preference. For instance, the open API can Provide users with QoS in network according to the detected context and user's preference, after detecting the context such as location and speed and user's preference.

  • PDF

A Study on Korean Generative Question-Answering with Contextual Summarization (문맥 요약을 접목한 한국어 생성형 질의응답 모델 연구)

  • Jeongjae Nam;Wooyoung Kim;Sangduk Baek;Wonjun Lee;Taeyong Kim;Hyunsoo Yoon;Wooju Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.581-585
    • /
    • 2023
  • Question Answering(QA)은 질문과 문맥에 대한 정보를 토대로 적절한 답변을 도출하는 작업이다. 이때 입력으로 주어지는 문맥 텍스트는 대부분 길기 때문에 QA 모델은 이 정보를 처리하기 위해 상당한 컴퓨팅 자원이 필요하다. 이 문제를 해결하기 위해 본 논문에서는 요약 모델을 활용한 요약 기반 QA 모델 프레임워크를 제안한다. 이를 통해 문맥 정보를 효과적으로 요약하면서도 QA 모델의 컴퓨팅 비용을 줄이고 성능을 유지하는 것을 목표로 한다.

  • PDF

A Study on Context Environment and Model State for Robustness Acoustic Models (강건한 음향모델을 위한 모델의 상태와 문맥환경에 관한 연구)

  • 최재영;오세진;황도삼
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.366-369
    • /
    • 2003
  • 본 연구에서는 강건한 문맥의존 음향모델을 작성하기 위한 기초적인 연구로서 문맥환경과 상태수의 변화에 따른 음향모델의 성능을 고찰하고자 한다. 음성은 시간함수로 표현되며 음절, 단어, 연속음성을 발성할때 자음과 모음에 따라 발성시간에 차이가 있으며 음성인식의 최소 인식단위로 널리 사용되는 음소의 앞과 뒤에 오는 문맥환경에 따라 인식성능에 많은 차이를 보이고 있다. 따라서 본 연구에서는 시간의 변화(상태수의 변화)와 상태분할 과정에서 문맥환경의 변화를 고려하여 다양한 형태의 문맥의존 음향모델을 작성하였다. 모델학습은 음소결정트리 기반 SSS 알고리즘(Phonetic Decision Tree-based Successive State Splitting: PDT-555)을 이용하였다 PDT-SSS 알고리즘은 미지의 문맥정보를 해결하기 위해 문맥방향과 시간방향으로 목표 상태수에 도달할 때까지 상태분할을 수행하여 모델을 작성하는 방법이다. 본 연구에서 강건한 문맥의존 음향모델을 학습하기 위한 방법의 유효성을 확인하기 위해 국어공학센터의 452 단어를 대상으로 음소와 단어인식 실험을 수행하였다. 실험결과, 음성의 시간변이에 따른 모델의 상태수와 각 음소의 문맥환경에 따라 인식성능의 변화를 고찰할 수 있었다. 따라서 본 연구는 향후 음성인식 시스템의 강건한 문맥의존 음향모델을 작성하는데 유효할 것으로 기대된다.

  • PDF

Generative Multi-Turn Chatbot Using Generative Adversarial Network (생성적 적대적 신경망을 이용한 생성기반 멀티턴 챗봇)

  • Kim, Jintae;Kim, Harksoo;Kwon, Oh-Woog;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.25-30
    • /
    • 2018
  • 기존의 검색 기반 챗봇 시스템과 다르게 생성 기반 챗봇 시스템은 사전에 정의된 응답에 의존하지 않고 채팅 말뭉치를 학습한 신경망 모델을 사용하여 응답을 생성한다. 생성 기반 챗봇 시스템이 사람과 같이 자연스러운 응답을 생성하려면 이전 문맥을 반영해야 할 필요가 있다. 기존 연구에서는 문맥을 반영하기 위해 이전 문맥과 입력 발화를 통합하여 하나의 벡터로 표현했다. 이러한 경우 이전 문맥과 입력 발화가 분리되어 있지 않아 이전 문맥이 필요하지 않는 경우 잡음으로 작용할 수 있다. 본 논문은 이러한 문제를 해결하기 위해 입력 발화와 이전 문맥을 각각의 벡터로 표현하는 방법을 제안한다. 또한 생성적 적대적 신경망을 통해 챗봇 시스템을 보강하는 방법을 제안한다. 채팅 말뭉치(55,000 개의 학습 데이터, 5,000개의 검증 데이터, 5,260 개의 평가 데이터)를 사용한 실험에서 제안한 문맥 반영 방법과 생성적 적대적 신경망을 통한 챗봇 시스템 보강 방법은 BLEU와 임베딩 기반 평가의 성능 향상에 도움을 주었다.

  • PDF

Korean Noun Phrase Identification using Maximum Entropy Method (최대 엔트로피 모델을 이용한 한국어 명사구 추출)

  • Kang, In-Ho;Jeon, Su-Young;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.127-132
    • /
    • 2000
  • 본 논문에서는 격조사의 구문적인 특성을 이용하여, 수식어까지 포함한 명사구 추출 방법을 연구한다. 명사구 판정을 위해 연속적인 형태소열을 문맥정보로 사용하던 기존의 방법과 달리, 명사구의 처음과 끝 그리고 명사구 주변의 형태소를 이용하여 명사구의 수식 부분과 중심 명사를 문맥정보로 사용한다. 다양한 형태의 문맥정보들은 최대 엔트로피 원리(Maximum Entropy Principle)에 의해 하나의 확률 분포로 결합된다. 본 논문에서 제안하는 명사구 추출 방법은 먼저 구문 트리 태깅된 코퍼스에서 품사열로 표현되는 명사구 문법 규칙을 얻어낸다. 이렇게 얻어낸 명사구 규칙을 이용하여 격조사와 인접한 명사구 후보들을 추출한다. 추출된 각 명사구 후보는 학습 코퍼스에서 얻어낸 확률 분포에 기반하여 명사구로 해서될 확률값을 부여받는다. 이 중 제일 확률값이 높은 것을 선택하는 형태로 각 격조사와 관계있는 명사구를 추출한다. 본 연구에서 제시하는 모델로 실험을 한 결과 평균 4.5개의 구를 포함하는 명사구를 추출할 수 있었다.

  • PDF

Contextual Advertisement System based on Document Clustering (문서 클러스터링을 이용한 문맥 광고 시스템)

  • Lee, Dong-Kwang;Kang, In-Ho;An, Dong-Un
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.73-80
    • /
    • 2008
  • In this paper, an advertisement-keyword finding method using document clustering is proposed to solve problems by ambiguous words and incorrect identification of main keywords. News articles that have similar contents and the same advertisement-keywords are clustered to construct the contextual information of advertisement-keywords. In addition to news articles, the web page and summary of a product are also used to construct the contextual information. The given document is classified as one of the news article clusters, and then cluster-relevant advertisement-keywords are used to identify keywords in the document. We could achieve 21% precision improvement by our proposed method.