• Title/Summary/Keyword: 무한사면 모델

Search Result 17, Processing Time 0.263 seconds

Stability Analysis of Landslides using a Probabilistic Analysis Method in the Boeun Area (확률론적 해석기법을 이용한 보은지역의 사면재해 안정성분석)

  • Jeong, Nam-Soo;You, Kwang-ho;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.247-257
    • /
    • 2011
  • In this study the infinite slope model, one of the physical landslide models has been suggested to evaluate the susceptibility of the landslide. However, applying the infinite slope model in regional study area can be difficult or impossible because of the difficulties in obtaining and processing of large spatial data sets. With limited site investigation data, uncertainties were inevitably involved with. Therefore, the probabilistic analysis method such as Monte Carlo simulation and the GIS based infinite slope stability model have been used to evaluate the probability of failure. The proposed approach has been applied to practical example. The study area in Boeun area been selected since the area has been experienced tremendous amount of landslide occurrence. The geometric characteristics of the slope and the mechanical properties of soils like to friction angle and cohesion were obtained. In addition, coefficient of variation (COV) values in the uncertain parameters were varied from 10% to 30% in order to evaluate the effect of the uncertainty. The analysis results showed that the probabilistic analysis method can reduce the effect of uncertainty involved in input parameters.

Assessment of Landslide Susceptibility using a Coupled Infinite Slope Model and Hydrologic Model in Jinbu Area, Gangwon-Do (무한사면모델과 수리학적 모델의 결합을 통한 강원도 진부지역의 산사태 취약성 분석)

  • Lee, Jung Hyun;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.697-707
    • /
    • 2012
  • The quantitative landslide susceptibility assessment methods can be divided into statistical approaches and geomechanical approaches based on the consideration of the triggering factors and landslide models. The geomechanical approach is considered as one of the most effective approaches since this approach proposes physical slope model and considers geomorphological and geomechanical properties of slope materials. Therefore, the geomechanical approaches has been used widely in landslide susceptibility analysis using the infinite slope model as physical slope model. However, the previous studies assumed constant groundwater level for broad study area without the consideration of rainfall intensity and hydraulic properties of soil materials. Therefore, in this study, landslide susceptibility assessment was implemented using the coupled infinite slope model with hydrologic model. For the analysis, geomechanical and hydrualic properties of slope materials and rainfall intensity were measured from the soil samples which were obtained from field investigation. For the practical application, the proposed approach was applied to Jinbu area, Gangwon-Do which was experienced large amount of landslides in July 2006. In order to compare to the proposed approach, the previous approach was used to analyze the landslide susceptibility using randomly selected groundwater level. Comparison of the results shows that the accuracy of the proposed method was improved with the consideration of the hydrologic model.

Analysis and Verification of Slope Disaster Hazard Using Infinite Slope Model and GIS (무한사면해석기법과 GIS를 이용한 사면 재해 위험성 분석 및 검증)

  • 박혁진;이사로;김정우
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.313-320
    • /
    • 2003
  • Slope disaster is one of the repeated occurring geological disasters in rainy season resulting in about 23 human losses in Korea every year. The slope disaster, however, mainly depends on the spatial and climate properties. such as geology, geomorphology, and heavy rainfall, and, hence, the prediction or hazard analysis of the slope disaster is a difficult task. Therefore, GIS and various statistical methods are implemented for slope disaster analysis. In particular, GIS technique is widely used for the analysis because it effectively handles large amount of spatial data. The GIS technique. however, only considers the statistics between slope disaster occurrence and related factors, not the mechanism. Accordingly. an infinite slope model that mechanically considers the balance of forces applied to the slope is suggested here with GIS for slope disaster analysis. According to the research results, the infinite slope model has a possibility that can be utilized for landslide prediction and hazard evaluation since 87.5% of landslide occurrence areas have been predicted by this technique.

Infinite Slope Stability Analysis based on Rainfall Pattern in Ulleung-do (울릉도지역 강우패턴을 고려한 무한사면 안정성 해석)

  • Lee, Chung-Ki;Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.11-24
    • /
    • 2018
  • The purpose of slope stability analysis is to predict the location and occurrence time considering the rainfall, topographic and soil characteristics, etc. In this study, infinite slope stability analysis considering the time distribution characteristics of the daily maximum rainfall was conducted using a model that combines a digital terrain model and a groundwater flow model. As the results of slope stability analysis, 69.1~70.0% of Fs < 1 cells are in the range of slope angle $20{\sim}50^{\circ}$ and Fs < 1 starts to appear in 2 hours for $Q_1$ model, 5 hours for $Q_2$, 7 hours for $Q_3$ and 6 hours for $Q_4$. Furthermore, the maximum number of Fs < 1 cells appear in 6 hours for $Q_1$ model, 12 hours for $Q_2$, 16 hours for $Q_3$ and 20 hours for $Q_4$, and the area of Fs < 1 is 14.3% for $Q_1$ model, 15.0% for $Q_2$, 15.6% for $Q_3$, and 16.3% for $Q_4$.

A Risk Evaluation Method of Slope Failure Due to Rainfall using a Digital Terrain Model (수치지형모델을 이용한 강우시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, JongGil;Jung, MinSu;Torii, Nobuyuki;Okimura, Takashi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.219-229
    • /
    • 2010
  • Slope failure in South Korea generally occurs by the localized heavy rain in a rainy season and typhoon, and it annually causes huge losses of both life and property because nearly 70% of territory in South Korea is covered with mountains. It is required to measure the risk of slope failure quantitatively before proper prevention methods are provided. However, there is no way to estimate the risk based on realtime rainfall, geological characteristics, and geotechnical engineering properties. This study presents the development of digital terrion model to predict slope stability using infinite slope stability theory combined with temporal groundwater change. Case studies were performed to investigate factors to affect slope stability in Japan.

A Comparative Study of Surficial Stability Analyses in Unsaturated Soil Slopes (불포화 토사사면의 얕은파괴 해석에 대한 비교 연구)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.135-143
    • /
    • 2001
  • 강우에 의한 잔류토에서의 얕은 사면파괴는 세계적으로 흔히 볼 수 있는 사면파괴의 형태이다. 본 연구에서는 침투가 사면 표면의 안정에 미치는 영향을 평가하기 위해 한계평형법을 이용하는 무한사면 해석법을 연구하였다. 재현기간에 따른 강우강도가 지속기간이 고려되는 임의의 강우에 의해 유발되는 얕은 사면파괴의 가능성을 평가하기 위해서 Green-Ampt 모델에 바탕을 둔 간략법들이 적용되었다. 간략법들에 의한 결과들과 비교하기 위하여 일련의 수치해석이 수행되었다. 그 결과에 의하면 적절하게 선택된 입력값을 사용하면 수정간략법이 더욱 엄밀한 해석법인 유한요소해석과 근사한 합리적인 결과를 줌을 알 수 있다.

  • PDF

A Stochastic Numerical Analysis of Groundwater Fluctuations in Hillside Slopes for Assessing Risk of Landslides (산사태 위험도 추정을 위한 지하수위 변동의 추계론적 수치 해석)

  • 이인모
    • Geotechnical Engineering
    • /
    • v.3 no.4
    • /
    • pp.41-54
    • /
    • 1987
  • A stochastic numerical analysis for predicting the groundswater fluctuations in hillside slopes is performed in this paper to account for the uncertainties associated with the rainfall and site characteristics. The effect of spatial variabilities of aquifer parameters and the effect of temporal variability of recharge on the groundwater fluctuations are studied in depth. The Kriging is used to account for the spatial tariabilities of aquifer parameters. This technique prolevides the best linear unbiased estimator of a parameter and its minimum variance from a litsitem number of measured data. A stochastic one-dimensional numerical model is delreloped b) combining the groundwater flow model, the Kriging, and the first-order second-moment analysis. In addition, a two dimensional detelministic groundwater model is developed to study the change of ground water surfas in the transverse direction as well as in the downslope direction. It is revealed that the undulations of the impervious bedrock in addition to the permeability and the specific yield have an important influence on the fluctuations of the groundwater surface. It is also found that th'e groundwater changes significantly in the transverse direction as well as in the downslope direction. The results obtained in this analysis may be used for evaluation of landslide risks due to high porewater pressure.

  • PDF

The Stability Analysis Method with the Failure Shape in Cutting Slopes (절취사면에서의 파괴형태에 따른 안정해석방법)

  • Kang, Yea Mook;Chee, In Taeg;Kim, Yong Seong;Kim, Ji Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.97-106
    • /
    • 1998
  • This study was carried out to investigate the problem of analysis method of circular sliding, which uses a high rate to work out a countermeasure for landslides. The results of this study were summarized as follows : 1. As a result of the analysis of sliding surface along the soil layers in forty model slopes, the boundary layer in weathered soil and weathered rock indicated a very high possibility of sliding than in other places. 2. Because most landslides in Korea occur along the discontinuity face at the boundary of soil layers, below 2m. from land surface, it is a good method for safe design to work the countermeasure for these kinds of landslides in cutting slopes. 3. When the inclination of slopes is fixed and the length of slopes is changed, the cercular sliding slopes were more safe as the soil layers are more shallow and the length of slopes are shorter, but the safety ratio of infinite sliding slopes was same as the other even though their length of slopes was different. 4. As a result of the analysis by cercular sliding analysis method and infinite sliding analysis method with some condition that the inclination of slopes was $30^{\circ}$ degree, because most landslides in Korea occur at this condition, these methods indicated different results to each other as well as cercular sliding analysis method showed too much safety ratio than infinite sliding analysis method.

  • PDF

소규모 개발지역의 토사재해예측에 관한 연구

  • Park, Ki-Bum;Park, Eun-Yeong;Cha, Sang-Hwa;Kim, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.512-515
    • /
    • 2012
  • 최근의 재해 발생은 하천에 의한 범람, 제방의 붕괴 등에 의한 피해발생보다는 일정지역에 국한적으로 내수배제 불량, 토사유출, 산사태 등으로 인한 피해의 발생이 증가하고 있다. 특히나 도시지역과 신규개발지역을 중심으로 집중호우로 인한 토사유출 등으로 인한 배수로 막힘, 산사태등의 2차적인 피해가 증가하고 있는 추세이다. 2011년의 서울의 우면산 산사태 등과 같은 도시중심에서의 피해와 강원도 등의 신규개발지역에서의 토사로 인해 2차, 3차 피해는 국지적이고 예측이 불가능한 곳에서 발생되고 있다. 이러한 토사유출, 산사태에 의한 예측기법은 최근의 정보기술의 발달로 인해 보다 다양한 방법의 접근들이 시도되고 있으며, 이에 대한 정량적인 평가기법들이 개발되고 적용되고 있다. 본 연구에서는 산지지형의 소규모 개발지의 토사재해의 위험성을 평가하기 위하여 GIS 기술을 이용한 사면의 안정성과 산사태 위험성을 평가하는 대표적인 방법으로 Pack et al. (1998)이 제안한 수리적 무한사면 안정모델과 결합하여 사면안정분석을 위해 개발된 SINMAP을 이용하여 소규모 개발지역의 토석류 해석과 사면의 안정성 검토 그리고 범용토양공식을 이용하여 토사유출량을 산정하여 개발지역내 사면 및 토사재해의 위험성을 평가하였다. GIS를 이용한 지형적 특성에 따른 사면의 위험성과 토사유출량 해석 결과를 이용하여 소규모 개발지역의 토사재해의 위험성을 정량적이고 다각적으로 평가하여 재해발생에 따른 위험성을 노출하고 이에 대한 대책 수립에 도움이 될 것으로 판단된다.

  • PDF

A Study of Stability Analysis on Unsaturated Soil Slopes Considering Rainfall (강우를 고려한 불포화 토사사면의 안정해석 연구)

  • Kim, Khi-Woong;Kim, Bum-Joo;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.9-18
    • /
    • 2008
  • Shallow slope failures in residual soil during periods of prolonged infiltration are common in Korea. This study examines an infinite slope analysis to estimate the influence of infiltration on surficial stability of slopes by the limit equilibrium method. Approximate method which is based on the Green-Ampt model have been considered to evaluate the likelihood of shallow slope failure which is induced by a particular rainfall event that accounts for the rainfall intensity and duration for various return periods. Pradel & Raad method which is devised to predict the depth of wetting front to decomposed granite soil slopes having measured soil-water characteristic curves. To compare the results with those obtained from the Pradel & Raad method, a series of numerical analysis using SEEP/W were carried out. It was found that the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of decomposed granite soils was found to be a proper analysis for shallow slope failures due to rainfall.

  • PDF