• Title/Summary/Keyword: 무인 반송차

Search Result 19, Processing Time 0.026 seconds

Obstacle Detection System of AGV for Automated Container Terminal (항만 자동화를 위한 AGV의 장애물 감지 시스템)

  • 김두형;강병수;박찬훈;박경택
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.467-471
    • /
    • 1997
  • AGV is very proper equipment for Port Automation. AGV must have Obstacle Detection System(ODS) for port automation. Obstacle Detection System must have some functions. It must be able to classify some specified object from background data. And it must be able to track classified objects. Finally, ODS must determine its next action for safe cruise whether it must do emergency stop or it must speed down or it must change it track. For these functions, ODS can have many different structure. In this paper, we will propose one structure among some possible own which is under construction.

  • PDF

A Heuristic Based Navigation Algorithm for Autonomous Guided Vehicle (경험적 방법에 기초한 무인 반송차의 항법 알고리즘)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.58-67
    • /
    • 1995
  • A path planning algorithm using a laser range finder are presented for real-tiem navigation of an autonomous guided vehicle. Considering that the laser range finder has the excellent resolution with respect to angular and distance measurements, a sophisticated local path planning algorithm is achieved by using the human's heuristic method. In the case of which the man knows not rhe path, but the goal direction, the man forwards to the goal direction, avoids obstacle if it appears, and selects the best pathway when there are multi-passable ways between objects. These heuristic principles are applied to the path decision of autonomous guided vehicle such as forward open, side open and no way. Also, the effectiveness of the established path planning algorithm is estimated by computer simulation in complex environment.

  • PDF

Design of Automatic Guided Vehicle Controller with Built-in Programmable Logic Controller (PLC 내장형 무인 반송차(AGV) 제어기 설계)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.3
    • /
    • pp.118-124
    • /
    • 2019
  • Recently, the industrial field has been changed to the smart factory system based on information and communication technology (ICT) in order to improve productivity, quality and customer satisfaction. The most important machine to realize the smart factory is the AGV(automatic guided vehicle) and the adoption of AGV is increasing. Generally, AGV is developed using general purpose PLC(Programmable Logic controller), but the price of AGV is expensive and its volume is large. On the other hand, the industrial field due to space constraints in the workplace is required the low cost AGV which can be minimization, expansion of function, and easily reconfiguration. Therefore, in order to solve these problems, this study is proposed a design method of AGV controller with built-in PLC, and evaluated its performance. In the results of the experimentation, it showed good performance (speed control error = 0.021[m/s], posture control error=2.1[mm]) for the speed and posture control. In this way, when applying the proposed AGV controller in this study to the industrial filed, it is possible to reduce the size and reconfigure at low cost.

Study on optimal steering control of an unmanned cart (無人 搬送車의 最適 操向制御)

  • 김옥현;정성종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 1987
  • An optimal control procedure is presented for steering of an unmanned cart which has two motored wheels on its left and right side. Steering, running and stopping are enabled by controlling the motor speed independently. An optimal proportional-plus-integral control is employed to eliminate steady state error which is sustained by a simple proportional control for tracking a circular arc path. A simple and readily-implemented suboptimal control is also examined. The suboptimal control gives comparable performance and therefore provides an effective approach for industrial application of the unmanned cart. Effects of design parameters of unmanned cart such as forward velocity, wheel radius and position of sensor are investigated. It is shown that within the practicable values of the parameters the controlled performance improves rapidly with increase of those parameters then the improvement becomes negligible, which suggests base values over which the parameters should be taken.

국내외 정보

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.94-1 s.98
    • /
    • pp.27-42
    • /
    • 1994
  • PDF

Tracking control of AGV with Observer. (Observer를 이용한 무인 반송차의 경로 추종 제어)

  • Lee, Won-Kyung;Im, Il-Sun;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2901-2903
    • /
    • 2000
  • This thesis deals with study and implementation of Fuzzy controller with observer which can enhance the path-tracking performance of optically guided AGV(Automated Guided Vehicle). The AGV in this thesis is differential drive type and has front-side and rear-side optical sensors. which can identify the guiding path. This controller has excellent disturbance rejection and therefore is advantageous when it is instructed to follow straight paths. This fuzzy controller with observer enhances transient performance of the controller is demonstrated by simulation and is compared with that of individual loop controller

  • PDF

RFID-based Shortest Time Algorithm Line Tracer (RFID 기반 최단시간 알고리즘 라인트레이서)

  • Cheol-Min, Kim;Hee-Young, Cho;Tae-Sung, Yun;Ho-Jun, Shin;Hyoung-Keun, Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1221-1228
    • /
    • 2022
  • With the development of modern technology, the use of unmanned automation equipment that can replace humans in logistics and industrial sites is increasing. The technology of one such automation facility, the Unmanned Carrier (AGV), includes Line Tracing, which allows you to recognize a line through infrared sensors and drive a predetermined route. In this paper, the shortest time algorithm using Arduino is configured in the line tracing technology to enable efficient driving. It is also designed to collect location and time information using RFID tags.