Design of Automatic Guided Vehicle Controller with Built-in Programmable Logic Controller

PLC 내장형 무인 반송차(AGV) 제어기 설계

  • Lee, Ju-Won (Department of Electric and Automation Engineering, Andong Science College) ;
  • Lee, Byeong-Ro (Department of Electronics Engineering, Gyeongnam National University of Science and Technology)
  • 이주원 (안동과학대학교 전기자동화과) ;
  • 이병로 (경남과학기술대학교 전자공학과)
  • Received : 2019.06.24
  • Accepted : 2019.09.30
  • Published : 2019.09.30

Abstract

Recently, the industrial field has been changed to the smart factory system based on information and communication technology (ICT) in order to improve productivity, quality and customer satisfaction. The most important machine to realize the smart factory is the AGV(automatic guided vehicle) and the adoption of AGV is increasing. Generally, AGV is developed using general purpose PLC(Programmable Logic controller), but the price of AGV is expensive and its volume is large. On the other hand, the industrial field due to space constraints in the workplace is required the low cost AGV which can be minimization, expansion of function, and easily reconfiguration. Therefore, in order to solve these problems, this study is proposed a design method of AGV controller with built-in PLC, and evaluated its performance. In the results of the experimentation, it showed good performance (speed control error = 0.021[m/s], posture control error=2.1[mm]) for the speed and posture control. In this way, when applying the proposed AGV controller in this study to the industrial filed, it is possible to reduce the size and reconfigure at low cost.

최근 산업현장에서는 생산성, 품질, 고객 만족도를 향상시키기 위해 정보통신기술(ICT)을 기반으로 한 스마트 팩토리 체제로 전환하고 있다. 스마트 팩토리를 실현함에 있어 가장 중요한 장치는 무인 반송차(AGV)이며, AGV의 도입이 증가하고 있다. 일반적으로 AGV은 범용 PLC를 이용하여 개발하고 있으나, 범용 PLC로 개발된 AGV의 가격은 고가이며, 부피 또한 크다. 한편, 산업현장에서는 작업장의 공간적 제약 때문에 소형화, 용이한 재구성 등이 가능한 저가의 AGV를 요구하고 있다. 따라서 본 연구에서는 이러한 문제점을 해결하기 위해 PLC 내장형 AGV 제어기의 설계법을 제안하고, 그 성능을 평가하였다. 그 결과, 우수한 속도제어와 주행 정밀도(속도제어 오차=0.021[m/s], 주행자세제어의 평균오차 = 2.1[mm])를 보였다. 이와 같이 제안된 AGV 제어기를 산업현장에 적용한다면, 저비용으로 소형화와 재구성 등이 가능할 것이다.

Keywords

References

  1. S. Butdee, A. Suebsomran, F. Vignat, P.K.D.V. Yarlafadda, "Control and path prediction of Automate Guided Vehicle", Journal of Achievements in Materials and Manufacturing Eng., vol. 31, issue 2, pp. 442-448, Dec., 2008.
  2. H. Martinez-Barbera, Humberto, D. Herrero-Perez, "Autonomous navigation of an automated guided vehicle in industrial environments," Robotics and Computer- Integra ted Manufacturing, vol. 26, no.4, pp. 296-311, 2010. https://doi.org/10.1016/j.rcim.2009.10.003
  3. X. Wu, P. Lou, Q. Cai, C. Zhou, K. Shen, "Design and control of material transport system for automated guided vehicle," in Processings of UKACC International Conference on Control, Sept, 2012, pp. 765-770.
  4. M. Kajan, L. Mrafko, F. Duchon, P. Hubinsky, J. Sovcfik. "Control of Automated Guided Vehicle with PLC SIMATIC ET200S CPU," American Journal of Mechanical Engineering, vol. 1, no. 7, pp. 343-348, 2013.
  5. P. Parikh, S. Sheth, R. Vasani, J. Gohil, "Implementing Fuzzy Logic Controller and PID Controller to a DC Encoder Motor-A case of an Automated Guided Vehicle," Procedia Manufacturing, vol. 20, pp. 219-226, 2018. https://doi.org/10.1016/j.promfg.2018.02.032
  6. A. Kumar, "Development of an automated guided vehicles in industrial environment." International Journal of Mechanical Engineering and Robotics Research, vol. 3, no. 1, pp. 377-391, 2014.
  7. K. S. Margaret, G. Sathish Kumar, J. Narendiran, M. Raman. "PLC Based Sub-Assembly Station with Automated Guided Vehicle," International Journal of Emerging Research in Management & Technology, vol. 6, no. 7, pp. 256-261, 2017.
  8. http://comfilewiki.co.kr/en/doku.php?id=cublocindex
  9. H. H. Tack, S. G. Kwon,"Driving Control of Automated Guided Vehicle Using Centroid of Gravity Method," Journal of the Korea Industrial Information Systems Research, vol. 19, no. 2, Apr., pp. 59-66, 2014. https://doi.org/10.9723/jksiis.2014.19.2.059