• Title/Summary/Keyword: 무인차량제어

Search Result 118, Processing Time 0.027 seconds

Vision-based AGV Parking System (비젼 기반의 무인이송차량 정차 시스템)

  • Park, Young-Su;Park, Jee-Hoon;Lee, Je-Won;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.473-479
    • /
    • 2009
  • This paper proposes an efficient method to locate the automated guided vehicle (AGV) into a specific parking position using artificial visual landmark and vision-based algorithm. The landmark has comer features and a HSI color arrangement for robustness against illuminant variation. The landmark is attached to left of a parking spot under a crane. For parking, an AGV detects the landmark with CCD camera fixed to the AGV using Harris comer detector and matching descriptors of the comer features. After detecting the landmark, the AGV tracks the landmark using pyramidal Lucas-Kanade feature tracker and a refinement process. Then, the AGV decreases its speed and aligns its longitudinal position with the center of the landmark. The experiments showed the AGV parked accurately at the parking spot with small standard deviation of error under bright illumination and dark illumination.

Development of Vehicle's Radio Data Communication System for LRV Signalling System (경량전철 신호시스템 열차무선데이터 전송시스템의 개발)

  • Lee Eul-jae;Yoou Yong-Gi;Jung Rak-Gyo;Choi Gyu-Hyung
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1429-1431
    • /
    • 2004
  • 경량전철의 무인운전을 위한 무선제어 신호 시스템 중에서 열차 제어정보 처리를 위한 무선데이터 전송시스템을 개발하였다. 개발된 시스템은 각각 중앙운용시스템, 지상무선중계시스템 및 개별차량운용시스템으로 구성된다. 무선데이터 네트웍은 2.4GHz 대역의 확산스펙트럼 방식의 주파수 호핑 라디오 모뎀을 사용하여 전용망을 구성하였으며 1초 이내에 무선망 내에 위치하는 모든 무선데이터 전송시스템과 정보를 교환하도록 설계되었다. 현재 실험실 테스트를 완료하고 새로이 건설된 전용 시험선에서 그 유효성을 테스트 중에 있다.

  • PDF

Shipping systems using optimal route algorithms (최적경로 알고리즘을 활용한 운송 시스템)

  • Ji-Yeon Seo;So-Yeon An;Seul Lee;Seo-Jeong Oh;Sang-Oh Yoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1084-1085
    • /
    • 2023
  • 현재 국내 항만에서의 작업은 대부분 수작업으로 진행되기 때문에 다양한 안전사고 발생과 시간 및 비용 등의 손실이 우려된다. 이를 해소하고자 최적경로 알고리즘을 이용한 AGV 차량 및 자동화 크레인으로 무인 스마트 항만을 제안한다. RFID 인식으로 컨테이너의 정보를 확인하고, 각 경로의 노드 정보가 담긴 QR 코드 인식을 통해 최적으로 목적지에 달성하는 것이 핵심이다. 본 논문은 이러한 기능으로 시간 및 비용 절감, 효율 상승과 인명피해 및 안전사고 예방을 목표로 한다.

Steering Performance Test of Autonomous Guided Vehicle(AGV) Based on Global Navigation Satellite System(GNSS) (위성항법 기반 AGV(Autonomous Guided Vehicle)의 조향 성능 시험)

  • Kang, Woo-Yong;Lee, Eun-Sung;Kim, Jeong-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • In this paper, a GNSS-based AGV system was designed, and steering tested on a golf cart using electric wires in order to confirm the control efficiency of the low speed vehicle which used only position information of GNSS. After analyzed the existing AGVs system, we developed controller and steering algorithm using GNSS based position information. To analyze the performance of the developed controller and steering algorithm, straight-type and circle-type trajectory test are executed. The results show that steering performance of GNSS-based AGV system is ${\pm}\;0.2m$ for a reference trajectory.

Wireless image processing based management system the driver of the vehicle (무선 영상처리 기반의 차량 운전자 관리 시스템)

  • Seo, Ji-Hwan;Lee, Jae-Hyun;Kang, Sung-In;Shin, Dong-Suk;Kim, Kwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2349-2354
    • /
    • 2009
  • Due to growth of electronics and control devices, automation and situational awareness systems have been applied by automobile. Vision systems with the introduction of unmanned system being actively developed, but are still high price and visual information is passed through the cable, because of cars are difficult to install. In this paper, can be installed inside the car at low-cost, simple image processing device through a wireless communication know the obstacles and the alarm system based on Zigbee wireless communication, infrared and ultrasonic sensors to monitor the situation through with easy parking cars outside the system design was implemented.

Wireless image processing based management system the driver of the vehicle (무선 영상처리 기반의 차량 운전자 관리 시스템)

  • Seo, Ji-Hwan;Lee, Jae-Hyun;Kang, Sung-In;Shin, Dong-Suk;Kim, Kwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.355-358
    • /
    • 2009
  • Due to growth of electronics and control devices, automation and situational awareness systems have been applied by automobile. Vision systems with the introduction of unmanned system being actively developed, but are still high price and visual information is passed through the cable, because of cars are difficult to install. In this paper, can be installed inside the car at low-cost, simple image processing device through a wireless communication know the obstacles and the alarm system based on Zigbee wireless communication, infrared and ultrasonic sensors to monitor the situation through with easy parking cars outside the system design was implemented.

  • PDF

Design of the Adaptive Fuzzy Control Scheme and its Application on the Steering Control of the UCT (무인 컨테이너 운송 조향 제어의 적응 퍼지 제어와 응용)

  • 이규준;이영진;윤영진;이원구;김종식;이만형
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.37-46
    • /
    • 2001
  • Fuzzy logic control(FLC) is composed of three parts : fuzzy rule-bases, membership functions, and scaling factors. Well-defined fuzzy rule-base should contain proper physical intuition on the plant, so are needed lots of experiences of the skillful expert. When membership functions are considered, some parameters on the memberships function such as function shape, support, allocation density should be selected well. The rule of scaling factors is 'scaling'(amplifying or reducing) for both input and output signals of the FLC to fit in the membership function support and to operate the plant intentionally. To get a better performance of the FLC, it is necessary to adjust the parameters of the FLC. In general, the adaptation of the scaling factors is the most effective adjustment scheme, compared with that of the fuzzy rule-base or membership function parameters. This study proposes the adaptation scheme of the scaling factors. When the adaptation is performed on-line, the stability of the adaptive FLC should be guaranteed. The stable FLC system can be designed with stability analysis in the sense of Lyapunov stability. To adapt the scaling factors for the error signals, the concept of the conventional MRAC would be introduced into slightly modified form. A tracking accuracy of the control system would be enhanced by the modified shape and support of the membership function. The simulation is achieved on the pilot plant with the hydraulic steering control of a UCT(Unmanned Container Transporter) of which modeling dynamics have lots of severe uncertainties and modeling errors.

  • PDF

Steering Control of Unmaned Container Transporter Using MRAC (MRAC 기법을 이용한 무인 컨테이너 운송차량의 조향 제어)

  • Lee, Y.J.;Huh, N.;Choi, J.Y.;Lee, K.S.;Lee, M.H.
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.291-301
    • /
    • 2000
  • T his paper presents the lateral and longitudinal control algorithm for the driving of a 4WS AGV(Automated Guided Vehicle). The control law to the lateral and longitudinal control of the AGV includes adaptive agin tuning ability, that is the controller gain of the gravity compensated PD controller can be changed on a real-time. The gain tuning law is derived from the Lyapunov direct method using the output error of the reference model and the actual model, And to show the performance of the presented lateral and longitudinal control algorithm, we simulate toe nonlinear AGV equations of the motion by deriving the Newton-Euler Method, The read path is from quay yard area to docking position in loading yard area. The quay yard area is where the quay crane loads the container to the AGV and the docking position is where the container is transferred to the gantry crane. The road types are constructed in a straight line and J-turn. When driving the straight line, the driving velocity is 6㎧ and the J-turn is 3㎧.

  • PDF

Development of Steering System for Unmanned Vehicle by Using Robust Control (무인차량의 강인한 조향제어 시스템 설계에 관한 연구)

  • Jeong, Seung-Gwon;Kim, In-Su;Park, Gi-Seon;Lee, Jong-Nyeon;Lee, Man-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.747-756
    • /
    • 2002
  • The automatic steering system for unmanned vehicle was developed. The magnet and MR (Magnetoresistive) sensors are used for the tue detecting system. The lateral distance between sensor and the center line of the road is determined by the linearization of the distance according to the output. The PD control theory is used for the design of the controller to compare with $H_\infty$ control theory. The $H_\infty$ control theory is used for the design of the controller to reduce the disturbance. The performance of the PD controller and $H_\infty$ controller is compared in simulations and tests. The PD controller is easy to tune in the test site. The $H_\infty$ controller is robust far the disturbances in the test results.

Adaptive Control for Lateral Motion of an Unmanned Ground Vehicle using Neural Networks (신경망을 활용한 무인차량의 횡방향 적응 제어)

  • Shin, Jongho;Huh, Jinwook;Choe, Tokson;Kim, Chonghui;Joo, Sanghyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.998-1003
    • /
    • 2013
  • This study proposes an adaptive control algorithm for lateral motion of a UGV (Unmanned Ground Vehicle) using an NN (Neural Networks). The lateral motion of the UGV can be corrupted with various uncertainties such as side slip. In order to compensate the performance degradation of the UGV under various uncertainties, an NN-based adaptive control is designed by utilizing a virtual control concept. Since both the drift and input gain terms are uncertain, the proposed method adapts the whole terms related to the difference between the nominal and real systems. To avoid a singularity problem with the adaptive control, the affine property of the UGV dynamic model is utilized and the overall closed-loop stability is analyzed rigorously. Finally, numerical simulations using Carsim are performed to validate the effectiveness of the proposed scheme.