• 제목/요약/키워드: 무인차량제어

검색결과 118건 처리시간 0.022초

무인운전차량의 자율주행을 위한 경로점 기반 경로계획 (Path Planning for Autonomous Navigation of a Driverless Ground Vehicle Based on Waypoints)

  • 송광열;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.211-217
    • /
    • 2014
  • This paper addresses an algorithm of path planning for autonomous driving of a ground vehicle in waypoint navigation. The proposed algorithm is flexible in utilization under a large GPS positioning error and generates collision-free multiple paths while pursuing minimum traveling time. An optimal path reduces inefficient steering by minimizing lateral changes in generated waypoints along a path. Simulation results compare the proposed algorithm with the A* algorithm by manipulation of the steering wheel and traveling time, and show that the proposed algorithm realizes real-time obstacle avoidance by quick processing of path generation, and minimum time traveling by producing paths with small lateral changes while overcoming the very irregular positioning error from the GPS.

원격지 현장감을 향상시키기 위한 무인차량 원격조종에 관한 연구 (A Study on the Teleoperation of the Unmanned Grounded Vehicle for Improving Telepresence)

  • 이태곤;유지환
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.553-558
    • /
    • 2010
  • In this paper, we proposed a teleoperation scheme of unmanned grounded vehicle to improve telepresence. Especially, bilateral control architecture for transmitting realistic steering feeling to the remote driver is investigated. System architecture of the teleoperated remote vehicle is introduced with visual, auditory and kinesthetic haptic channel. Several bilateral control architectures are proposed for transmitting remote steering feeling, and subject tests are done to evaluate the performance. Position-force bilateral control architecture with returning torque compensation algorithm shows best performance.

무인차량 적용을 위한 영상 기반의 지형 분류 기법 (Vision Based Outdoor Terrain Classification for Unmanned Ground Vehicles)

  • 성기열;곽동민;이승연;유준
    • 제어로봇시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.372-378
    • /
    • 2009
  • For effective mobility control of unmanned ground vehicles in outdoor off-road environments, terrain cover classification technology using passive sensors is vital. This paper presents a novel method far terrain classification based on color and texture information of off-road images. It uses a neural network classifier and wavelet features. We exploit the wavelet mean and energy features extracted from multi-channel wavelet transformed images and also utilize the terrain class spatial coordinates of images to include additional features. By comparing the classification performance according to applied features, the experimental results show that the proposed algorithm has a promising result and potential possibilities for autonomous navigation.

레이저 레이다를 이용한 무인차량의 지도생성 알고리즘 개발 (The Development of a Map Building Algorithm using LADAR for Unmanned Ground Vehicle)

  • 이정엽;이상훈;김정하;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1246-1253
    • /
    • 2009
  • To be high efficient for a navigation of unmanned ground vehicle, it must be able to distinguish between safe and hazardous regions in its immediate environment. We present an advanced method using laser range finder for building global 2D digital maps that include environment information. Laser range finder is used for mapping of obstacles and driving environment in the 2D laser plane. Rotary encoders are used for localization of UGV. The main contributions of this research are the development of an algorithm for global 2D map building and it will turn a UGV navigation based on map matching into a possibility. In this paper, a map building algorithm will be introduced and an assessment of algorithm reliability is judged at an each environment.

극한 무인 로봇 차량을 위한 MEMS GPS/INS 항법 시스템 (MEMS GPS/INS Navigation System for an Unmanned Ground Vehicle Operated in Severe Environment)

  • 김성철;홍진석;송진우
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.133-139
    • /
    • 2007
  • An unmanned ground vehicle can perform its mission automatically without human control in unknown environment. To move up to a destination in various surrounding situation, navigational information is indispensible. In order to be adopted for an unmanned vehicle, the navigation box is small, light weight and low power consumption. This paper suggests navigation system using a low grade MEMS IMU for supplying position, velocity, and attitude of an unmanned ground vehicle. This system consists of low cost and light weight MEMS sensors and a GPS receiver to meet unmanned vehicle requirements. The sensors are basically integrated by loosely coupled method using Kalman filter and internal algorithms are divided into initial alignment, sensor error compensation, and complex navigation algorithm. The performance of the designed navigation system has been analyzed by real time field test and compared to commercial tactical grade GPS/INS system.

초음파 위치인식 시스템을 이용한 차량의 무인주행 (Unmanned Navigation of Vehicle Using the Ultrasonic Satellite System)

  • 김수용;이정민;이동활;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.875-882
    • /
    • 2007
  • In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.

무인지상차량을 위한 GPS와 DR을 이용한 항법시스템 (GPS and DR Navigation System for Unmanned 9round Vehicle)

  • 박대선;박정훈;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.75-75
    • /
    • 2000
  • Recently, number of navigation system using GPS and other complementary sensors has been developed to offer high-position accuracy. In this paper, an integration of GPS and Dead-Reckoning, which consists of a fiber optical gyroscope and two high-precision wheel-motor encoders for a unmanned navigation system, is presented. The main objective of this integrated GPS/DR unmanned navigation system is to provide accurate position and heading navigation data continuously for autonomous mobile robot. We propose a method for increasing the accuracy of the estimated position of the mobile robot by its DR sensors, high-precision wheel-motor encoders and a fiber optical gyroscope. We used Kalman filter theory to combine GPS and DR measurements. The performance of GPS/DR navigation system is evaluated.

  • PDF

4륜 조향 무인 컨테이너 차량(AGV) 시스템의 동특성 분석 (Analysis of Dynamic Characteristics for Four-Wheel-Steering Automated Guided Vehicle(AGV) System)

  • 최재영;이영진;변성태;이권순;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.306-306
    • /
    • 2000
  • This paper analyze the dynamic characteristics of Automated Guided Vehicle(AGV) which is being developed as a part of automation in port through DADS, one of the multi-dynamic analysis program, Previous evaluation of a vehicle is carried out through the continuous driving test of a real vehicle, however this method raise the loss of finance and time. If it is possible to analyze the dynamic characteristics of vehicle before construction completely we can compensate the loss of money and time during constructing. AGV contained containers is very heavy and its center of gravity can be easily changed with the disturbance from road or cornering. It makes AGV unsatisfied, therefore we evaluate the handling characteristics and stability of the full vehicle model. This paper contribute to establish the foundation of the development of a new system like a AGV which have a special structure.

  • PDF

무인차량 적용을 위한 차선강조기법 기반의 차선 인식 (Lane Recognition Using Lane Prominence Algorithm for Unmanned Vehicles)

  • 백준영;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.625-631
    • /
    • 2010
  • This paper proposes lane recognition algorithm using lane prominence technique to extract lane candidate. The lane prominence technique is combined with embossing effect, lane thickness check, and lane extraction using mask. The proposed lane recognition algorithm consists of preprocessing, lane candidate extraction and lane recognition. First, preprocessing is executed, which includes gray image acquisition, inverse perspective transform and gaussian blur. Second, lane candidate is extracted by using lane prominence technique. Finally, lane is recognized by using hough transform and least square method. To evaluate the proposed lane recognition algorithm, this algorithm was applied to the detection of lanes in the rainy and night day. The experiment results showed that the proposed algorithm can recognize lane in various environment. It means that the algorithm can be applied to lane recognition to drive unmanned vehicles.

차량 모델 및 LIDAR를 이용한 맵 매칭 기반의 야지환경에 강인한 무인 자율주행 기술 연구 (The Research of Unmanned Autonomous Navigation's Map Matching using Vehicle Model and LIDAR)

  • 박재웅;김재환;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.451-459
    • /
    • 2011
  • Fundamentally, there are 5 systems are needed for autonomous navigation of unmanned ground vehicle: Localization, environment perception, path planning, motion planning and vehicle control. Path planning and motion planning are accomplished based on result of the environment perception process. Thus, high reliability of localization and the environment perception will be a criterion that makes a judgment overall autonomous navigation. In this paper, via map matching using vehicle dynamic model and LIDAR sensors, replace high price localization system to new one, and have researched an algorithm that lead to robust autonomous navigation. Finally, all results are verified via actual unmanned ground vehicle tests.