• Title/Summary/Keyword: 무인기 채널

Search Result 17, Processing Time 0.034 seconds

Performance Analysis by Secondary link Frame structure in UAV System (무인기 운용환경을 고려한 보조링크 프레임 구조설계에 따른 성능분석)

  • Yoon, Chang-Bae;Kim, Hoi-Jun;Hong, Su-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1115-1120
    • /
    • 2017
  • In this paper, we apply the LMMSE(: Linear Minimum Mean Square Error) algorithm to overcome the Doppler effect according to the UAV(: Unmanned Aerial Vehicle) velocity in multipath fading channel environment. Simulation results show that the performance difference depends on the pilot arrangement and pattern, and we confirmed that the frame structure proposed in this paper can provide a stable secondary link for high speed UAV system.

Development of FCC Redundancy System for Tiltrotor UAV (틸트로터 무인기 비행제어컴퓨터 이중화 시스템 개발)

  • Park, Bum-Jin;Kang, Young-Shin;Yoo, Chang-Sun;Cho, Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Flight control computer of tiltrotor UAV was designed by redundancy system with primary and secondary channels to improve reliability. The redundancy functions consist of channel switching and data recovery. The channel switching function consists of software method by using cross channel data link and hardware method by using watchdog timer. The data recovery is the function to maintain flight condition when the flight control computer is restarted exceptionally in operation. The redundancy system was verified by flight control computer bench test, system integration test and HILS test. This paper describes the redundancy function of tiltrotor UAV flight control computer and test-verification method.

Design of Multiple Channel Wireless Remote Control System for Unmanned Vehicle (무인차량용 다중채널 무선원격 제어시스템의 설계)

  • Kim, Jin-Kwan;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.489-494
    • /
    • 2014
  • In this paper, a design of multiple channel wireless remote control system for unmanned vehicle is proposed. One of serious problems of the previous wireless remote control system is that it does not work when a control channel is damaged in case of emergency because it's composed of single control channel. Therefore, we propose the multiple channel wireless remote system which is composed of a portable wireless remote controller and a stationary wireless remote controller. The portable wireless remote controller and stationary wireless remote controller are designed and the multiple channel wireless remote control system for unmanned vehicles in developed. By applying to the unmanned vehicle to check its performance. The wireless remote control system is tested. Emergency stop using the portable wireless remote controller is tested when the stationary wireless remote controller is damaged. Also, emergency stop using the stationary wireless remote controller is tested when the portable wireless remote controller is damaged. The result of emergency stop test shows satisfied performance.

Behavioral Decentralized Optimum Controller Design for UAV Formation Flight (무인기 군집비행을 위한 행위기반 분산형 최적제어기 설계)

  • Kim, Seung-Keun;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.565-573
    • /
    • 2008
  • The behavior-based decentralized approach is considered for multi-UAV formation flight. It is assumed that each UAV has its own mission of flying to a specified region, while the distances between UAVs should be maintained. These two requirements may conflict with each other. To design the controller, coupled dynamics approach is applied to multi-UAVs with an assumption that each UAV can communicate with each other to share the state-information. Control gain matrices are optimized to acquire better performances of formation flying. To validate the proposed control approach, numerical simulation is performed for the waypoint-passing mission of multi-UAVs.

DVB-S2-based T4 class common data link performance improvement plan for UAV system application (무인기 체계 적용을 위한 DVB-S2 기반 T4급 공용데이터링크 성능 개선방안)

  • Bae, Jongtae;Baek, Seongho;Oh, Jimyung;Lee, Sangpill;Song, Choongho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1846-1854
    • /
    • 2022
  • The sophistication and diversification of mission equipment for surveillance and reconnaissance is leading to a demand for large-capacity public data links. Overseas, a T4 class(274Mbps) common data link was applied to the Global hwak, a high-altitude unmanned aerial vehicle, and various research and development are being conducted in Korea. In this paper, we propose a structure in which pilot is additionally applied to improve SNR performance while minimizing data transmission rate loss in the DVB-S2 frame structure, which is a european satellite broadcasting standard, for high-capacity transmission of T4 class or higher in the common data link. For the performance evaluation of the proposed structure, the performance of the DVB-S2 was compared and analyzed by simulating the UAV data link channel environment. As a result of simulation, 0.15% of transmission rate loss occurred at T4 class transmission rate compared to DVB-S2 in the proposed structure, but improved SNR reception performance of 0.2~0.3dB was confirmed in the UAV channel environment.

Lightweight Authentication Scheme for Secure Data Transmission in Terrestrial CNPC Links (지상 CNPC 링크에서 안전한 데이터 전송을 위한 경량화된 인증기법)

  • Kim, Man Sik;Jun, Moon-Seog;Kang, Jung Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.429-436
    • /
    • 2017
  • Unmanned Aerial Vehicles (UAV) that are piloted without human pilots can be commanded remotely via frequencies or perform pre-inputted missions. UAVs have been mainly used for military purposes, but due to the development of ICT technology, they are now widely used in the private sector. Teal Group's 2014 World UAV Forecast predicts that the UAV market will grow by 10% annually over the next decade, reaching $ 12.5 billion by 2023. However, because UAVs are primarily remotely controlled, if a malicious user accesses a remotely controlled UAV, it could seriously infringe privacy and cause financial loss or even loss of life. To solve this problem, a secure channel must be established through mutual authentication between the UAV and the control center. However, existing security techniques require a lot of computing resources and power, and because communication distances, infrastructure, and data flow are different from UAV networks, it is unsuitable for application in UAV environments. To resolve this problem, the study presents a lightweight UAV authentication method based on Physical Unclonable Functions (PUFs) that requires less computing resources in the ground Control and Non-Payload Communication (CNPC) environment, where recently, technology standardization is actively under progress.

Performance Analysis of a UAV Energy Harvesting Relay Network in the Terahertz Band (테라헤르츠 대역 무인비행체 에너지 수확 릴레이 네트워크 성능분석)

  • Yeongi Cho;Saifur Rahman Sabuj;Han-Shin Jo
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.411-417
    • /
    • 2023
  • Unmanned aerial vehicle (UAV)-assisted relay has the advantages of ease of deployment, good communication channels, and mobility over traditional terrestrial relay, which greatly improves wireless connectivity. In this paper, we design a UAV-enabled relay network that can utilize radio frequency bands to harvest energy from sources and utilize terahertz (THz) bands to transmit information between secondary transmitters and receivers. Next, we solve the optimal position of the UAV that maximizes the relay channel capacity, and propose an algorithm to design two trajectories of UAV (a straight and an elliptical trajectory) using the derived solution. Numerical results show that the straight trajectory is better in terms of harvested energy and channel capacity.

UAV based Wireless Ad hoc Network Performance Analysis (공중무인기 기반의 무선애드혹 네트워크 성능 분석)

  • Chun, Jeong-myong;Ha, Dong-hun;Park, Jae-seong;Yoon, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.123-125
    • /
    • 2015
  • Wireless ad hoc network which is comprised of wireless nodes that have the limited communication range is utilized to monitoring disaster area, tracing object, and tactical system. But in the case of wireless node on the ground, a network performance decrease because wireless channel is affected from obstacle or the node deployment is restricted. In this paper, we consider wireless network based on UAV(Unmanned Aerial Vehicle) which has little spatial constraint and quickly deploy a position. We implement test-bed included ground nodes and UAV, and measure throughput and PDR(Packet Delivery Ratio) according to the usage of UAV. We show that network performance is improved by relaying data on UAV.

  • PDF

The Development of The Simulation Environment for Operating a Simultaneous Man/Unmanned Aerial Vehicle Teaming (유/무인 항공기 복합운용체계 검증을 위한 시뮬레이션 환경 구축)

  • Gang, Byeong Gyu;Park, Minsu;Choi, Eunju
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.36-42
    • /
    • 2019
  • This research illustrates how the simulation environment for operating the simultaneous man/unmanned aerial vehicle teaming is constructed. X-Plane program, HILS for the ducted fan aircraft (unmanned) and CTLS (manned aircraft) with communication devices are interfaced to simulate the basic co-operational flight. The X-plane and HILS can allow operators to experience the maned and unmanned aircraft operation in the airspace on the ground in turn they can perform various simulated missions in advance before the actual flight. For the test purpose, the data link between man/unmanned aircraft and ground control station is examined using C Band and UHF radio channels by the manned aircraft.

Relay Network using UAV: Survey of Physical Layer and Performance Enhancement Issue (무인항공기를 이용한 중계네트워크: 물리계층 동향분석 및 성능향상 이슈)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.901-906
    • /
    • 2019
  • UAV (Unmanned Aerial Vehicle) is widely used in various areas such as civil and military applications including entertainment industries. Among them, UAV based communication system is also one of the important application areas. Relays have been received much attention in communication system due to its benefits of performance enhancement and coverage extension. In this paper, we investigate UAVs as relays especially focusing on physical layer. First, we introduce the research on UAV application for the relays, then the basic performance of relay networks in dual-hop communication system is analyzed by adopting decode-and-forward (DF) relaying protocol. The performance is represented using symbol error rate (SER) and UAV channels are applied by assuming asymmetric environments. Based on the performance analysis, we discuss performance enhancement issues by considering physical layer.