• Title/Summary/Keyword: 무리효과

Search Result 205, Processing Time 0.018 seconds

A Group Pile Effect on Changing Size of Pile Cap in Group Pile under Sand Soil in Earthquake (지진 시 사질토 지반에 근입된 무리말뚝의 말뚝 캡 크기가 무리말뚝 효과에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.39-46
    • /
    • 2019
  • The interaction between the ground and structures should be considered for seismic design of group piles supporting the superstructure. The p-y curve has been used widely for the analysis of nonlinear relationship between the ground and structures, and various researches have conducted to apply the dynamic p-y curve for seismic design of group piles. This curve considers the interaction between the ground and structures under the dynamic load such as an earthquake. However the supported effect by the pile cap and the interaction by inertia behavior of superstructures. Therefore, the shaking table test was conducted to verify the effect of the change of the pile cap in group piles supporting superstructures embedded in sandy soil. The test condition is that the arrangement and distance between centers of piles are fixed and the length of the pile cap is changed for various distances between the pile cap side and the pile center. The result shows that the distance between the pile cap side and the pile center have an effect on the dynamic p-y curve and the effect of group piles.

Evaluation of Dynamic p-y Curves of Group Piles Using Centrifuge Model Tests (원심모형실험을 이용한 무리말뚝의 동적 p-y 곡선 산정)

  • Nguyen, Bao Ngoc;Tran, Nghiem Xuan;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.53-63
    • /
    • 2018
  • Dynamic soil-pile interaction is the main concern in the design of group piles under earthquake loadings. The lateral resistance of the pile group under dynamic loading becomes different from that of a single pile due to the group pile effect. However, this aspect has not yet been properly studied for the pile group under seismic loading condition. Thus, in this study the group pile effect was evaluated by performing a series of dynamic centrifuge tests on $3{\times}3$ group pile in dry loose sand. The multiplier coefficients for ultimate lateral resistance and subgrade reaction modulus were suggested to obtain the p-y curve of the group pile. The suggested coefficients were verified by performing the nonlinear dynamic analyses, which adopted Beam on Nonlinear Winkler Foundation model. The predicted behavior of the pile group showed the reasonable agreement compared with the results of the centrifuge tests under sinusoidal wave and artificial wave.

The Effect of Dynamic Behavior on Changing Pile Cap Size of Pile Group in Sandy Soil (사질토 지반에서 말뚝 캡 크기가 무리말뚝의 동적거동에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.8
    • /
    • pp.5-12
    • /
    • 2019
  • A pile group, that consists of several piles connected by a pile cap, is used as the superstructure. The pile supports vertical and horizontal load to design the pile group, but the effect of bearing capacity of the pile cap has not considered. Various researches have been conducted to reflect the effect of bearing capacity of the pile cap in order to reduce the amount of piles in the range of the stability under the vertical load of the superstructure. However, the effect of bearing capacity under the horizontal seismic load has not been studied adequately. Therefore, a shaking table test was carried out with different-sized pile caps that support the superstructure in this study. This test was to verify the influence of the size of the pile cap in the group pile under the horizontal load. The result shows that the size of the pile cap affects to the dynamic behavior of the superstructure and the pile group. Also, the bigger size of the pile group makes the larger constraint effect of ground, and it results that both the ground and the pile moves as a whole.

국내 증권형 크라우드펀딩 투자자의 손실보전기대가 참여의도 및 무리행동에 미치는 영향: 조절효과분석을 중심으로

  • Hwang, Nak-Jin;Lee, So-Yeong
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2020.06a
    • /
    • pp.45-50
    • /
    • 2020
  • 최근 계획된 행동이론을 바탕으로 국내 증권형 크라우드펀딩 투자자의 참여의도와 무리행동에 관한 연구를 수행하였다. 연구 결과 계획된 행동이론의 주요변인 중 태도와 주관적 규범은 증권형 크라우드펀딩 투자자의 참여의도에 정(+)의 영향을 미치는 것으로 확인되었다. 그리고 간접효과 분석 결과 참여의도는 태도, 주관적 규범과 무리행동 사이에서 매개적 역할을 하는 것으로 확인되었다. 그러나 계획된 행동이론에서 행동의도의 주요 변인으로 제시된 지각된 행동통제는 참여의도에 미치는 영향이 통계적으로 비유의적인 것으로 나타났다. 대신 무리행동에는 직접적으로 정(+)의 영향을 미치는 것으로 확인되었다. 한편 국내 증권형 크라우드펀딩 투자자는 실제 투자행동을 할 때 플랫폼에서 제공되는 펀딩 진행정보를 일종의 신호로 보고 다수의 다른 투자자를 모방하여 무리행동을 한다는 것을 실증적으로 확인하였다. 본 연구는 종전 연구의 후속연구로서 국내 증권형 크라우드펀딩 투자자의 손실보전기대가 참여의도 및 무리행동에 조절적 역할을 하는지 여부를 연구해 보고자 한다. 손실보전기대는 증권형 크라우드펀딩 투자로 인해 투자자가 받게 되는 각종 혜택이나 투자조건에 따라 크라우드펀딩 투자로 인한 손실 일부 또는 전부를 보전하거나 손실 발생 가능성을 낮출 수 있다고 믿는 정도를 말한다. 본 연구를 통해 국내 증권형 크라우드펀딩 투자와 관련한 각종 혜택 및 투자조건 등이 투자자의 손실보전기대를 유발하여 투자자의 참여의도와 무리행동에 조절적 영향을 미치는지 여부를 실증적으로 확인함으로써 향후 크라우드펀딩 관계 당사자들의 동 제도 활성화 및 투자자 보호를 위한 각종 정책 및 사업계획 수립 등에 유의미한 결과로 활용될 수 있을 것이다.

  • PDF

Shaft Group Efficiency of Friction Pile Groups in Deep Soft Clay (대심도 마찰무리말뚝의 주면 무리효율 분석)

  • Paek, Jin-Yeol;Cho, Jae-Yeon;Jeong, Sang-Seom;Hwang, Taik-Jean
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.49-60
    • /
    • 2012
  • In this study, the behaviors of friction pile groups are investigated using 3D finite element (FE) analysis. The emphasis was quantifying on the shear load transfer (f-w) characteristics of pile groups and the shaft group effects. A framework for determining the f-w curve is proposed based on both theoretical analysis and field load test database. Through comparisons with case histories and FE results, it is shown that the proposed f-w curve is capable of predicting the behavior of a friction pile in deep soft clay. Additionally, a numerical analysis that takes into account the group efficiency factors were performed for major parameter on group pile-soil interaction, such as the pile spacing, pile arrangement, soil condition, and location of pile cap. Based on these results, the shaft group efficiency factors were also proposed.

The Method of Estimating Group Effect with Small Pull-out Tests of Screw Anchors (나선형 앵커의 실내인발시험을 이용한 무리효과 평가기법)

  • Park Si-Sam;Lee Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.123-131
    • /
    • 2005
  • In the present study, laboratory pull-out tests with screw anchors are carried out to investigate behavior characteristics of the anchors used in foundation system of underground structures which are applied to uplifting seepage forces. Small scaled pull-out tests in sand under saturated condition and dry condition were carried out. For estimating the group effects of the anchors, the upward displacement and the pullout load varied with spacing of the anchor were observed. The test results were compared with theoretical equation for the ultimate pull-out force. Also, the result of tests can be used to the finite element analysis program, $PENTAGON^{2D}$.

Behavior of Small-Scale Pile Group Under Vertical Loading (연직하중을 받는 소규모 무리말뚝의 거동)

  • 이영남;이승현;박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.37-46
    • /
    • 2001
  • Pile load tests were carried out to investigate the contribution of the pile cap to the carrying capacity of a pile group and load transfer characteristics of piles in the group. A group of 24 piles$(4 \times6 array)$ of 92.5mm diameter steel pipe were installed to the depth of 3m fron the ground surface, the top of weathered rock. A maximum load of 320ton was applied to the pile cap, $1.5\times2.3m$, in contact with the ground surface. At the maximum load of 320ton, the pile cap has carried 22% of the total load. Average ultimate capacity of pile in the pile group was estimated to be 16.4ton, substantially higher than that of single pile, installed at the corner and tested before pile cap construction. For the same magnitude of settlement, the pile in the center carried less load than the pile at the perimeter due to strain superposition effect. Piles in the group showed almost constant contribution(approx. 60%) of side friction to the total capacity for all of the loading stages, while that of single pile decreased from 82% to 65%.

  • PDF

Compressive Behavior of Micropile According to Pile Spacing and Embedded Pile Angle in Sand (사질토 지반에 설치된 마이크로파일의 설치간격 및 설치각도에 따른 압축거동특성)

  • Kyung, Doo-Hyun;Kim, Ga-Ram;Kim, Dae-Hong;Shin, Ju-Ho;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.57-67
    • /
    • 2013
  • Micropile technology has evolved continuously since its instruction by Fernando Lizzi in the 1950s. The effects of group micropile have been researched by many researchers. The effects of group micropile differ and change with pile length, pile spacing (S), pile angle (${\theta}$) and pile embedded conditions. In the present study, the effects of resistance increase and settlement reduction from micropiles were investigated through a series of axial load tests. For the study, axial load tests were performed using mat, group micropiles and micropiled-raft (MPR) in various pile spacing and pile angle conditions. As the result, the effects of resistance of micropiled-raft were 80% (3D) to 110% (7D) of the total resistance of mat and group micropile. The effects of settlement restraint of micropiled-raft were 20% (S=3D, ${\theta}=45^{\circ}$) to 70% (7D, ${\theta}=15^{\circ}$) of settlement of mat foundation.

Small Scaled Pull-out Tests on Group Effect of Screw Anchors in Saturated Sand (포화토내 나선형 앵커의 무리효과에 관한 실험적 고찰)

  • 김홍택;권영호;박사원;최영하
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.387-394
    • /
    • 2000
  • In the present study, laboratory pull-out tests with screw anchors are carried out to investigate behavior characteristics of underground structures applied uplift seepage forces. Small scaled pull-out tests in sand were conducted under saturated condition. And then, it was observed that the upward displacement as well as the pullout load varied with spacing of the anchor. Also, analyses have been performed with the aim of pointing out the effects of various parameters on the group effect of the screw anchors.

  • PDF

Bond Strength of Near Surface-Mounted FRP Plate in RC Member (콘크리트 내에 표면매입 보강된 FRP 판의 부착강도)

  • Seo, Soo-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 2012
  • This paper analyzed seventy eight previous test results to evaluate bond strength of Near Surface-Mounted (NSM) FRP and prediction formulas previously proposed by researchers. The results showed that the most reliable bond strength prediction was the one proposed by Seracino, who considered the shape coefficient (ratio of width-thickness) and stiffness of FRP. However, the equation tended to underestimate the bond strength, especially serious when FRP bond length was relatively short, because the equation did not consider the effect of bond length. Based on the analysis of previous test results, the relation between bond length and bond strength and the group effect due to close proximity of FRPs were determined. Based on the findings, the Seracino's formula was modified and it's applicability was evaluated. The result showed that the suggested formula can be used effectively to predict the bond strength of NSM FRP.