• Title/Summary/Keyword: 목질 바이오매스

Search Result 145, Processing Time 0.027 seconds

Production of Furfural and its Application in Biorefinery (Biorefinery 산업과 Furfural 생산 및 응용 분야)

  • Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.10-15
    • /
    • 2016
  • In this new energy economy era, the importance of renewable energy resource needs to be highly addressed, as the demand of energy dramatically increases and fossil fuel is being exhausted. Lignocellulosic biomass is considered as the sustainable and renewable feedstock to produce biochemicals and biofuels that are the alternative for petroleum derived products. Furfural is a natural precursor for the range of furan based chemicals and solvents such as methylfuran, tetrahydrofuran, methyltetrahydrofuran, ethyltetrahydrofuryl ether, ethyl levulinate, levulinic acid, and alkanes. Thus, furfural should be a renewable platform chemical for biochemicals and renewable biofuels. In this paper, the concept of biorefinery, furfural production and its applications are briefly reviewed.

Process Development and Economic Evaluation for Catalytic Conversion of Furfural to Tetrahydrofurfuryl Alcohol (푸르푸랄의 화학적 촉매전환을 통한 테트라히드로푸르푸릴 알코올 생산 공정 개발 및 경제성 평가)

  • Byun, Jaewon;Han, Jeehoon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.609-617
    • /
    • 2017
  • Lignocellulosic biomass is a renewable resource for production of biofuels and biochemicals. Furfural (FF) is an important platform chemical catalytically derived from the hemicellulose fraction of biomass. Tetrahydrofurfuryl alcohol (THFA) is a FF derivative and can be used as an eco-friendly solvent with thermal and chemical stability. Despite large numbers of experimental studies for catalytic conversion of FF to THFA, few research have conducted on the economic feasibility for large-scale THFA production from FF. At the stage of assessment of the potential for commercialization of conversion technology, a large-scale process study is required to identify technological bottleneck and to obtain information for solving scale-up problems. In this study, process simulation and technoeconomic evaluation for catalytic conversion of FF to THFA are performed, as the following three steps: integrated process design, heat integration, and economic evaluation. First, a large-scale process including conversion and separation processes is designed based on experimental results. When the FF processing rate is 255 tonnes per day, the FF-to-THFA yields are 63.2~67.9 mol%. After heat integration, the heating requirements are reduced by 14.4~16.4%. Finally, we analyze the cost drivers and calculate minimum selling price of THFA by economic evaluation. The minimum selling price of THFA for the developed process are $2,120~2,340 per tonne, which are close to the current THFA market price.

Combustion Characteristics of Coal and Wood Biomass Co-Firing on the Pulverized Coal Combustion Furnace (목질계 바이오매스와 유연탄의 혼합 연소특성에 관한 연구)

  • Kim, Sung-Chul;Lee, Hyun-Dong;Kim, Jae-Gwan
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.293-298
    • /
    • 2006
  • There are many researches in progress on co-firing of coal and biomass to reduce carbon dioxide produced from the coal consumption. This study carried out 200 Kg/h combustion test furnace by mixing coal with timber. Coal was mixed with domestic and imported-wood around 10% to 20% based on input energy. For the mixed fuel, combustion temperature, unburned carbon and the composition of flue gas were analyzed. In addition, the tendency of slagging and fouling was examined using a probe. According to the result of the experiment, combustion temperature was depended on the kind of wood and mixing ratio. The unburned carbon loss was higher with increase of wood biomass mixing ratio, as a result, the total heat loss of furnace was slightly increased. The emission of NOx and SOx were decreased by $3{\sim}20%$ and $21{\sim}60%$ respectively. There are no difference of slagging and fouling tendency between biomass co-firing and coal burning only.

  • PDF

Study on Low Temperature Pyrolysis of Woody Biomass to Produce High-Calorie Torrefied Fuel (고열량 반탄화 연료 생산을 위한 목질계 바이오매스 저온열분해 방법에 대한 연구)

  • Lee, Changyeop;Kwon, Minjun;Kim, Daehae;Kim, Sewon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.263-263
    • /
    • 2014
  • Low temperature pyrolysis of woody biomass has been conducted to produce highcalorie torrefied fuel. In this experiment, to maximize the energy efficiency in heat transfer, flue gas is directly used for heat source in the torrefier. To accomplish the oxygen free environment in the torrefaction reactor, a burner has been developed and it can be runned with fuel rich state. An inner central axis rotating type of reactor was applied in experiment. To use the calorific gases produced from torrefier, another burner is developed to combust them.

  • PDF

Enzymatic sccharification of lignocellulosic biomass by enzyme system of brown-rot fungi (갈색부후균의 효소시스템을 이용한 목질계 바이오매스의 효소당화)

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Kim, Young-Kyoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.529-532
    • /
    • 2006
  • Recently the production of ethanol from lignocecllulosics has received much attention due to immense potential for conversion of renewable biometerials into biofuels and chemicals. Fomitopsis palustris causes a typycal brown-rot and is unusual in that it rapidly depolymerize the cellulose in wood without removing the surrounding lignin that normally prevents microbial attack. This study demonstrated that the brown rot basidiomycete F. palustris was able to degrade crystalline cellulose. This fungus could also produce the three major cellulases (BGL, EXG and EG) when the cells were grown on 2.0% Avicel. The fungus was able to degrade both the crystalline and amorphous forms of cellulose from woody biomasses. Moreover, we found that this fungus has the processive EG like CBH which are able to degrade the crystalline region of cellulose. To establish the cellulase system in relation with degradation of woody biomass, we performed that purification, characterization and molecular cloning of a BGL, EGs and GLA from F. palustris grown on Avicel.

  • PDF

Simulation and model validation of Biomass Fast Pyrolysis in a fluidized bed reactor using CFD (전산유체역학(CFD)을 이용한 유동층반응기 내부의 목질계 바이오매스 급속 열분해 모델 비교 및 검증)

  • Ju, Young Min;Euh, Seung Hee;Oh, Kwang cheol;Lee, Kang Yol;Lee, Beom Goo;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.200-210
    • /
    • 2015
  • The modeling for fast pyrolysis of biomass in fluidized bed reactor has been developed for accurate prediction of bio-oil and gas products and for yield improvement. The purpose of this study is to analyze and to compare the CFD(Computational Fluid Dynamics) simulation results with the experimental data from the CFD simulation results with the experimental data from the reference(Mellin et al., 2014) for gas products generated during fast pyrolysis of biomass in fluidized bed reactor. CFD(ANSYS FLUENT v.15.0) was used for the simulation. Complex pyrolysis reaction scheme of biomass subcomponents was applied for the simulation of pyrolysis reaction. This pyrolysis reaction scheme was included reaction of cellulose, hemicellulose, lignin in detail, gas products obtained from pyrolysis were mainly $CO_2$, CO, $CH_4$, $H_2$, $C_2H_4$. The deviation between the simulation results from this study and experimental data from the reference was calculated about 3.7%p, 4.6%p, 3.9%p for $CH_4$, $H_2$, $C_2H_4$ respectively, whereas 9.6%p and 6.7%p for $CO_2$ and CO which are relatively high. Through this study, it is possible to predict gas products accurately by using CFD simulation approach. Moreover, this modeling approach should be developed to predict fluidized bed reactor performance and other gas product yields.

Antioxidant Activity of The Residue Generated During Pervaporation of Bioethanol Produced from Lignocellulosic Biomass (목질계 바이오매스로부터 생산된 바이오에탄올 투과증발 과정에서 발생한 투과증발 잔류물의 항산화 활성)

  • Shin, Gyeong-Jin;Jeong, So-Yeon;Lee, Hong-Joo;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.826-837
    • /
    • 2015
  • In this study, we produced bioethanol from the original hydrolysate obtained during oxalic acid pretreatment of lignocellulosic biomass. The bioethanol was separated and concentrated by pervaporation and the residue after pervaporation was evaluated for its antioxidant activity. Xylose ($37.28g/{\ell}$) was the major product in the original hydrolysate. The original hydrolysate contained acetic acid, furfural and total phenolic compounds (TPC) as fermentation inhibitors. Acetic acid was removed by electrodialysis (ED), and $12.21g/{\ell}$ of bioethanol was produced from ED-treated hydrolysate. The TPC of ethyl acetate extracts from the residue obtained (OA-E) during pervaporation was 86.81 mg/100 g (extract). The $IC_{50}$ values of DPPH and ABTS radical scavenging activities, and reducing power of OA-E were $0.87mg/m{\ell}$, $0.85mg/m{\ell}$, and $0.59mg/m{\ell}$, respectively. Sugar degradation products and the phenolic compounds in OA-E were determined by GC-MS.

Steam gasification characteristics of oregon pine wood pellet (우드 펠릿의 스팀가스화 특성)

  • Hwang, Hoon;Choi, Sun-Yong;Lee, Moon-won;Kim, Lae-Hyun
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.192-192
    • /
    • 2010
  • 현재 산업과 과학의 발달로 인한 무분별한 화석연료의 사용은 에너지자원의 고갈과 환경오염의 문제를 야기시켜, 이의 해결을 위한 청정 신에너지에 대한 연구가 전 세계적으로 집중되고 있다. 이 중 바이오매스는 화석연료보다 비교적 높은 H/C 비를 갖기 때문에 신에너지인 수소 또는 Syngas를 생산하기 위한 가스화 특성이 우수한 특징을 가지고 있으며, 구성성분 내 중금속, 황, 질소를 거의 함유하지 않는 점에서 환경오염 저감과 동시에 대체 신에너지로써 각광을 받고 있다. 이에 본 연구에서는 목질계 바이오매스인 Wood pellet (미송)에 대하여 고정층 반응기를 이용하여 질소분위기하에서 온도 및 Steam/Biomass Ratio(이하 SBR) 조건에 따른 가스화 특성으로 고찰하는데 그 목적을 둔다. 온도의 영향에 대하여, 높은 온도 범위에서 수소 수율이 증가함을 알 수 있었다. SBR에 대한 영향으로서, 저온 (700, $800^{\circ}C$)에서는 SBR=1에서는 수소의 수율이 증가하였으나 SBR=2, 3에서 감소하는 것을 보였다. 하지만 $900^{\circ}C$에서는 SBR이 증가 할수록 수소의 수율이 증가하는 것으로 나타났다. 또한 볼륨비로 나타내었을 경우 $H_2/CO(vol/vol)$의 경우 $900^{\circ}C$, SBR=3에서 0.73%로 water gas shift reaction이 가장 잘 일어난 것을 확인했고, $H_2/CH_4(vol/vol)$의 경우 마찬가지로 위의 조건과 동일조건에서 2.59%로 steam reforming이 가장 잘 일어난 것을 확인할 수 있었다. 최종적으로 본 실험에서는 $900^{\circ}C$, SBR=3인 경우에 가장 높은 수소수율을 얻을 수 있으며, 이때 수소의 수율은 32.7 Vol%였다.

  • PDF

바이오매스 구성성분 중 리그닌의 전환에 관한 연구

  • Yun, Seong-Uk;Lee, Byeong-Hak
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.733-736
    • /
    • 2000
  • Lignin is usable as fuels and heavy oil additives if depolymerized to monomer unit, because the chemical structures are similar to high octane materials found in gasoline. In this study, the solvent-phase thermal cracking(solvolysis) of lignin was performed at the various temperature and time in a laboratory tubular reactor. Conversion yield was measured for the properties of thermal cracking and liquefaction reaction of lignin. Highest conversion yield when acetone was used as thermal cracking solvent was 55.5% at $350^{\circ}C$, 50minutes and highest tar generation were $260{\sim}350mg/g\;{\cdot}\;lignin$ at $250^{\circ}C$, and highest conversion yield after tar removal was 76.88% at $300^{\circ}C$, 30minutes. Conversion yield, product compositions and amounts were determined by tar degradation yield.

  • PDF

Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil (목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.