• Title/Summary/Keyword: 모형 업데이트

Search Result 37, Processing Time 0.02 seconds

3D Building Model Texture Extraction from Multiple Spatial Imagery for 3D City Modeling (3차원 도시모델 생성을 위한 다중 공간영상 기반 건물 모델 텍스쳐 추출)

  • Oh, Jae-Hong;Shin, Sung-Woong;Park, Jin-Ho;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2007
  • Since large portal service providers started web services for 3D city models around the world using spatial imagery, the competition has been getting intense to provide the models with the higher quality and accuracy. The building models are the most in number among the 3D city model objects, and it takes much time and money to create realistic model due to various shapes and visual appearances of building object. The aforementioned problem is the most significant limitation for the service and the update of the 3D city model of the large area. This study proposed a method of generating realistic 3D building models with quick and economical texture mapping using multiple spatial imagery such as aerial photos or satellite images after reconstructed geometric models of buildings from building layers in digital maps. Based on the experimental results, the suggested method has effectiveness for the generation of the 3D building models using various air-borne imagery and satellite imagery quickly and economically.

Categorical Prediction and Improvement Plan of Snow Damage Estimation using Random Forest (랜덤포레스트를 이용한 대설피해액에 대한 범주형 예측 및 개선방안 검토)

  • Lee, Hyeong Joo;Chung, Gunhui
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.157-162
    • /
    • 2019
  • Recently, the occurrence of unusual heavy snow and cold are increasing due to the unusual global climate change. In particular, the temperature dropped to minus 69 degrees Celsius in the United States on January 8, 2018. In Korea, on February 17, 2014, the auditorium building in Gyeongju Mauna Resort was collapsed due to the heavy snowfall. Because of the tragic accident many studies on the reduction of snow damage is being conducted, but it is difficult to predict the exact damage due to the lack of historical damage data, and uncertainty of meteorological data due to the long distance between the damaged area and the observatory. Therefore, in this study, available data were collected from factors that are thought to be corresponding to snow damage, and the amount of snow damage was estimated categorically using a random forest. At present, the prediction accuracy was not sufficient due to lack of historical damage data and changes of the design code for green houses. However, if accurate weather data are obtained in the affected areas. the accuracy of estimates would increase enough for being used for be the degree preparedness of disaster management.

The Improvement of Digital Textbook Functions Required for Curriculum Reorganization (교육과정 재구성을 위한 디지털교과서 기능 개선 방안 연구)

  • Kim, Hongsun;Jeong, Youngsik
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • Teachers should be able to reorganize the curriculum according to the student level, reorganize textbooks freely, and distribute them to students. However, current paper-textbooks are difficult to modify or edit some contents and distribute them to students, also current digital textbooks are grouped into units, so the order or educational resources cannot be reconstructed. In addition, The digital textbooks are difficult to update external links or the latest resources, and to contain various multimedia materials or high-definition realistic content due to capacity limitations. Therefore, this study presented functions: teaching and learning and evaluation functions, resources search and sharing functions, learning records and analysis functions, screen showing and printing functions, so that teachers can provide customized learning by level to students using digital textbooks. Through the expert Delphi survey, detailed functions for each area were divided into teachers and students. We proposed expanding and developing digital textbooks to various subjects, and distributing various teaching and learning models using digital textbooks.

Adaptive Operation of Boryeong Dam Water Supply Adjustment Standards against Multi-year Droughts (다년 가뭄 대비 보령댐 용수공급 조정기준의 적응형 운영방안)

  • Kim, Gi Joo;Lee, Jae Hwang;Lee, Joohyung;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.373-373
    • /
    • 2022
  • 전세계적으로 기후변화로 인해 3년 이상의 기간동안 지속되는 다년 가뭄의 빈도와 심도가 증가하고 있으며, 이로 인한 피해도 증가하고 있다. 본 연구에서는 이를 반영하여 전국 다목적댐 및 용수댐에서 모두 주요 가뭄 대응 대책으로 사용되고 있는 현행 용수공급 조정기준을 개선하는 방안을 제안하고자 한다. 가장 먼저, 장기 기억 반영이 가능한 시계열 모형인 ARFIMA(Autoregressive Fractional Integrated Moving Average) 모델을 사용하여 다양한 강도의 장기 기억을 가지고 있는 연간 유입량을 생성하였다. 이후, 연간 유입량을 k-최근접 이웃 방법 기반의 배분 도구를 사용하여 10일 단위 유입량으로 분배하였으며 이를 대체 용수공급 조정기준을 생성하기 위한 입력 변수로 사용하였다. 새로운 용수공급 조정기준은 매 시점마다 새롭게 업데이트되는 정보를 통해 현행 기준과 함께 적응형으로 저수지 운영에 사용되었다. 다년 가뭄이 반영된 유입량으로 적응형으로 저수지 운영을 관측 유입량 하에서 빈도와 크기의 측면에서 분석을 시행하였다. 그 결과, 심각한 실패(물 부족 비율 30% 이상)의 빈도의 경우 현행 기준 운영 시 6.14%에서 적응형 운영 시행 시 2.99%로 개선되었지만, 전체 기간 동안의 신뢰도는 적응형 운영보다(26.42%) 현행 운영 하에서 더욱 나은 결과를 보였다(41.19%). 위와 같은 분석 결과는 심각한 실패의 빈도와 크기를 줄이는 용수공급 조정기준을 시행하는 원론적인 목적과 일치하기에, 본 연구에서 제안하는 다년 가뭄에 대비한 적응형 운영 방안은 향후 길게 지속되는 가뭄 조건에서 저수지 운영 정책으로 활용될 수 있음을 확인하였다.

  • PDF

Eruption Stage of Permanent Teeth Using Diagnostic Model Analysis in Kyung Hee Dental Hospital (경희대학교 소아치과에 내원한 아동의 진단 모형 분석을 이용한 영구치 맹출 단계)

  • Oh, Taejun;Nam, Okhyung;Kim, Misun;Lee, Hyo-seol;Kim, Kwangchul;Choi, Sungchul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.10-20
    • /
    • 2019
  • Individual dental age is used as an index of chronological age estimation and is an important indicator of the child's growth stage. Dental age does change greatly over time, but it changes constantly. And updating information about this change is important. The purpose of this study was to provide information about tooth eruption stage using diagnostic model analysis and to investigate tooth eruption sequence and estimate chronological age based on this information. Tooth eruption stages were measured on a diagnostic model from 488 patients in 5 - 13 year old children. Based on the information on eruption stage, eruption sequence in maxilla was first permanent molar, central incisor, lateral incisor, first premolar, canine, second premolar and second permanent molar. Eruption sequence in mandible was first permanent molar, central incisor, lateral incisor, canine, first premolar, second premolar and second permanent molar. There were significant differences between males and females in the eruption stage of canine, first and second premolar, and second molar at several ages. The chronological age of male and female was estimated by the coefficient of determination of 0.816, 0.826 respectively.

Optimal parameter derivation for Muskingum method in consideration of lateral inflow and travel time (측방유입유량 및 유하시간을 고려한 Muskingum 최적 매개변수 도출)

  • Kim, Sang Ho;Kim, Ji-sung;Lee, Chang Hee
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.827-836
    • /
    • 2017
  • The most important parameters of the Muskingum method, widely used in hydrologic river routing, are the storage coefficient and the weighting factor. The Muskingum method does not consider the lateral inflow from the upstream to the downstream, but the lateral inflow actually occurs due to the rainfall on the watershed. As a result, it is very difficult to estimate the storage coefficient and the weighting factor by using the actual data of upstream and downstream. In this study, the flow without the lateral inflow was calculated from the river flow through the hydraulic flood routing by using the HEC-RAS one-dimensional unsteady flow model, and the method of the storage coefficient and the weighting factor calculation is presented. Considering that the storage coefficient relates to the travel time, the empirical travel time formulas used in the establishment of the domestic river basin plan were applied as the storage coefficient, and the simulation results were compared and analyzed. Finally, we have developed a formula for calculating the travel time considering the flow rate, and proposed a method to perform flood routing by updating the travel time according to the inflow change. The rise and fall process of the flow rate, the peak flow rate, and the peak time are well simulated when the travel time in consideration of the flow rate is applied as the storage coefficient.

Debris flow characteristics and sabo dam function in urban steep slopes (도심지 급경사지에서 토석류 범람 특성 및 사방댐 기능)

  • Kim, Yeonjoong;Kim, Taewoo;Kim, Dongkyum;Yoon, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.627-636
    • /
    • 2020
  • Debris flow disasters primarily occur in mountainous terrains far from cities. As such, they have been underestimated to cause relatively less damage compared with other natural disasters. However, owing to urbanization, several residential areas and major facilities have been built in mountainous regions, and the frequency of debris flow disasters is steadily increasing owing to the increase in rainfall with environmental and climate changes. Thus, the risk of debris flow is on the rise. However, only a few studies have explored the characteristics of flooding and reduction measures for debris flow in areas designated as steep slopes. In this regard, it is necessary to conduct research on securing independent disaster prevention technology, suitable for the environment in South Korea and reflective of the topographical characteristics thereof, and update and improve disaster prevention information. Accordingly, this study aimed to calculate the amount of debris flow, depending on disaster prevention performance targets for regions designated as steep slopes in South Korea, and develop an independent model to not only evaluate the impact of debris flow but also identify debris barriers that are optimal for mitigating damage. To validate the reliability of the two-dimensional debris flow model developed for the evaluation of debris barriers, the model's performance was compared with that of the hydraulic model. Furthermore, a 2-D debris model was constructed in consideration of the regional characteristics around the steep slopes to analyze the flow characteristics of the debris that directly reaches the damaged area. The flow characteristics of the debris delivered downstream were further analyzed, depending on the specifications (height) and installation locations of the debris barriers employed to reduce the damage. The experimental results showed that the reliability of the developed model is satisfactory; further, this study confirmed significant performance degradation of debris barriers in areas where the barriers were installed at a slope of 20° or more, which is the slope at which debris flows occur.