DOI QR코드

DOI QR Code

Optimal parameter derivation for Muskingum method in consideration of lateral inflow and travel time

측방유입유량 및 유하시간을 고려한 Muskingum 최적 매개변수 도출

  • Kim, Sang Ho (Department of Civil Engineering, Sangji University) ;
  • Kim, Ji-sung (Hydro Science and Engineering Research Institute, Korea Institute of Civil engineering and building Technology) ;
  • Lee, Chang Hee (Department of Renewable Energy Resources, Jungwon University)
  • 김상호 (상지대학교 이공과대학 건설시스템공학과) ;
  • 김지성 (한국건설기술연구원 수자원.하천연구소) ;
  • 이창희 (중원대학교 이공대학 신재생에너지자원학과)
  • Received : 2017.09.17
  • Accepted : 2017.10.17
  • Published : 2017.12.31

Abstract

The most important parameters of the Muskingum method, widely used in hydrologic river routing, are the storage coefficient and the weighting factor. The Muskingum method does not consider the lateral inflow from the upstream to the downstream, but the lateral inflow actually occurs due to the rainfall on the watershed. As a result, it is very difficult to estimate the storage coefficient and the weighting factor by using the actual data of upstream and downstream. In this study, the flow without the lateral inflow was calculated from the river flow through the hydraulic flood routing by using the HEC-RAS one-dimensional unsteady flow model, and the method of the storage coefficient and the weighting factor calculation is presented. Considering that the storage coefficient relates to the travel time, the empirical travel time formulas used in the establishment of the domestic river basin plan were applied as the storage coefficient, and the simulation results were compared and analyzed. Finally, we have developed a formula for calculating the travel time considering the flow rate, and proposed a method to perform flood routing by updating the travel time according to the inflow change. The rise and fall process of the flow rate, the peak flow rate, and the peak time are well simulated when the travel time in consideration of the flow rate is applied as the storage coefficient.

하도홍수추적 방법에서 많이 사용되고 있는 Muskingum 방법의 가장 중요한 매개변수는 저류상수와 가중인자이다. Muskingum 방법은 상류유입지점에서 하류 유출지점까지 측방유입량이 고려되지 않지만, 실제 유역에는 강우로 인하여 측방유입유량이 발생한다. 이로 인해 상하류 실측자료를 이용하여 저류상수 및 가중인자를 산정하는 것이 매우 어려운 상황이다. 이에 본 연구는 HEC-RAS 1차원 부정류 해석모형을 이용한 수리학적 홍수추적을 통해 측방유입유량이 제외된 상태에서의 하도에서 전파되는 유량을 산정하였고, 이를 이용하여 저류상수 및 가중인자를 산정하는 방법을 제시하였다. 이와 함께 저류상수가 유하시간과 관계있음을 감안하여 국내 하천기본계획 수립 시 사용되는 유하시간 경험 공식들을 저류상수로 적용한 결과를 비교 분석하였다. 마지막으로 유량이 고려된 유하시간 산정 식을 개발하고, 유입량의 변화에 맞춰 유하시간을 업데이트하여 모의를 수행하는 방법을 제시하였다. 유량을 고려한 유하시간을 저류상수로 적용한 경우, 유량의 상승 및 하강 과정, 첨두 유량, 그리고 첨두 시간에 대해서 잘 모의하는 것으로 분석되었다.

Keywords

References

  1. Chow, V. T., Maidment, D. R., and Mays, L. W. (1988). Applied hydrology. McGraw-Hill, pp. 572.
  2. France, P. W. (1985). "Hydrologic routing with a microcomputer." Advanced in Engineering Software, Vol. 7, No. 1, pp. 8-12. https://doi.org/10.1016/0141-1195(85)90087-7
  3. Gray, D. M. (1973). Handbook on the principles of hydrology. Port Washington, N.Y., Water Information Center.
  4. Haktanir, T., and Ozmen, H. (1997). "Comparison of hydraulic and hydrologic routing on three long reservoirs." Journal of Hydraulic Engineering, Vol. 123, No. 2, pp. 153-156. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(153)
  5. Kim, S. H., and Lee, C. H. (2016). "A study on channel flood routing using nonlinear regression equation for the travel time." Journal of Wetlands Research, Vol. 18, No. 2, pp. 148-153. https://doi.org/10.17663/JWR.2016.18.2.148
  6. Kundzewicz, Z. W., and Strupczewski, W. G. (1982). "Approximate translation in the Muskingum model." Hydrological Sciences Journal, Vol. 27, No. 1, pp. 19-26. https://doi.org/10.1080/02626668209491082
  7. Linsley, R. K., Kohler, M. A., and Paulhus, J. L. H. (1975). Hydrology for engineers, Second ed. McGraw-Hill, New York, NY, pp. 340.
  8. McCarthy, G. T. (1938). The unit hydrograph and flood routing. US Army Corps Eng., New London, CT. US Engineering Office, Providence RI.
  9. McCuen, R. H. (1998). Hydrologic analysis and design, Second ed. Section 10.5.1, Estimation of the Muskingum Routing Coefficients. Prentice Hall.
  10. Ministry of Land, Transport and Maritime Affairs (2011). Cheongmi River basic plan, Korea.
  11. Ministry of Land, Transport and Maritime Affairs (2012). Design flood calculation manual, Korea.
  12. O'Donnell, T. (1985). "A direct three-parameter Muskingum procedure incorporating lateral inflow." Hydrological Sciences Journal, Vol. 30, No. 4, pp. 479-496.
  13. O'Sullivan, J. J., Ahilan, S., and Bruen, M. (2012). "A modified Muskingum routing approach for floodplain flows: theory and practice." Journal of Hydrology, Vol. 470-471, pp. 239-254. https://doi.org/10.1016/j.jhydrol.2012.09.007
  14. Singh, V. P. (1988). Hydrologic systems: rainfall-runoff modelling. Prentice Hall, New Jersey, USA.
  15. Tung, Y. K. (1985). "River flood routing by nonlinear Muskingum method." Journal of Hydraulic Engineering, Vol. 111, No. 12, pp. 1447-1460. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:12(1447)
  16. Wilson, E. M. (1990). Engineering hydrology. MacMillan, Hong Kong.
  17. Yun, Y. N. (2007). Hydrology-Fundamentals and Applications. Korea.