• Title/Summary/Keyword: 모형개선

Search Result 3,287, Processing Time 0.035 seconds

Development of evaluation items for adolescents' dietary habits and nutritional practices reflecting eating behaviors and food environment (식행동, 식생활 환경을 반영한 청소년의 식생활·영양 실천 평가 항목 개발)

  • Jimin Lim;Hye Ji Seo;Jieun Oh
    • Journal of Nutrition and Health
    • /
    • v.57 no.1
    • /
    • pp.136-152
    • /
    • 2024
  • Purpose: A comprehensive evaluation item was developed to assess adolescent dietary habits and nutritional practices, considering food intake, eating behaviors, and food culture, such as social support and food environment. Methods: The 59 candidate items of the evaluation checklist were obtained based on the results of the eighth Korea National Health and Nutrition Examination Survey data, Korea Dietary Reference Intakes, dietary guidelines for adolescents, Youth Risk Behavior Survey data, national nutrition policies and dietary guidelines, and literature reviews. Four hundred and three middle and high school students residing in metropolitan areas participated in a survey using the 58-item checklist, which was selected through expert evaluation and content validity ratio analysis. The construct validity of the assessment tool for the quality of adolescent diets was assessed by exploratory factor analyses to determine if the checklist items were organized properly and whether the responses to each item were distributed adequately. Results: The Bartlett sphericity test was significant for each area (p <0.001), and the eigen values were greater than one. The Kaiser-Meyer-Olkin and cumulative proportions by areas were food intake (0.765 and 56.8%, respectively), eating behaviors (0.544 and 64.8%, respectively), and food environment (0.699 and 62.4%, respectively). Twenty-two checklists were determined for the final evaluation items for the adolescents' dietary habits and nutritional practices and were categorized into three distinct factors: food intake (10 items), eating behaviors (4 items), and food environment (8 items). Conclusion: The evaluation items for adolescent dietary habits and nutritional practices is a useful checklist for easily and quickly assessing the dietary qualities and reflecting Korean adolescents and their food environmental factors related to a sustainable diet.

Developing educational programs to increase awareness of food additives among elementary school students (식품첨가물에 대한 초등학생들의 인식 개선을 위한 교육 프로그램 개발)

  • Soo Rin Ahn;Jae Wook Shin;Jung-Sug Lee;Hyo-Jeong Hwang
    • Journal of Nutrition and Health
    • /
    • v.57 no.4
    • /
    • pp.451-467
    • /
    • 2024
  • Purpose: This study aimed to develop a four-hour food additive education program for elementary school students to provide them with accurate information on food additives. Methods: A survey was conducted among 133 elementary school students living in Gyeonggi Province to identify the level of food additive awareness. A four-hour food additive education program and educational materials (PPT, activity sheets, and teacher guidelines) were developed based on the results of the food additive awareness survey. The developed educational programs were based on the Theoretical Model of Stages of Behavior Change. An elementary school nutrition teacher conducted a pilot education for 83 elementary school students to evaluate the feasibility of the developed education program. A survey was conducted to evaluate the effectiveness and satisfaction of the pilot education program. Results: The results of the Food Additive Awareness Survey showed that only 42.1% of people were aware of food additives; 46.3% wanted to know more about food additives, and 54.3% required food additive education. Food coloring (44.7%) and artificial sweeteners (18.7%) were the most common food additives of interest. What they wanted to know about food additives was the safety of food additives (36.8%) and the role and function of food additives (20.3%). After the pilot training on food additives, the level of awareness of food additives was improved significantly, and the percentage of participants who recognized the need for food additive education and promotion increased. According to the satisfaction survey of the food additives education, the interest, understanding, real-life application, learning method, and content amount were approximately 90%. Conclusion: The educational program developed through this study will change the negative perceptions of food additives in elementary school students to a positive one. It will do so by helping nutrition educators educate students on this important subject.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

A Study on Market Expansion Strategy via Two-Stage Customer Pre-segmentation Based on Customer Innovativeness and Value Orientation (고객혁신성과 가치지향성 기반의 2단계 사전 고객세분화를 통한 시장 확산 전략)

  • Heo, Tae-Young;Yoo, Young-Sang;Kim, Young-Myoung
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.1
    • /
    • pp.73-97
    • /
    • 2007
  • R&D into future technologies should be conducted in conjunction with technological innovation strategies that are linked to corporate survival within a framework of information and knowledge-based competitiveness. As such, future technology strategies should be ensured through open R&D organizations. The development of future technologies should not be conducted simply on the basis of future forecasts, but should take into account customer needs in advance and reflect them in the development of the future technologies or services. This research aims to select as segmentation variables the customers' attitude towards accepting future telecommunication technologies and their value orientation in their everyday life, as these factors wilt have the greatest effect on the demand for future telecommunication services and thus segment the future telecom service market. Likewise, such research seeks to segment the market from the stage of technology R&D activities and employ the results to formulate technology development strategies. Based on the customer attitude towards accepting new technologies, two groups were induced, and a hierarchical customer segmentation model was provided to conduct secondary segmentation of the two groups on the basis of their respective customer value orientation. A survey was conducted in June 2006 on 800 consumers aged 15 to 69, residing in Seoul and five other major South Korean cities, through one-on-one interviews. The samples were divided into two sub-groups according to their level of acceptance of new technology; a sub-group demonstrating a high level of technology acceptance (39.4%) and another sub-group with a comparatively lower level of technology acceptance (60.6%). These two sub-groups were further divided each into 5 smaller sub-groups (10 total smaller sub-groups) through two rounds of segmentation. The ten sub-groups were then analyzed in their detailed characteristics, including general demographic characteristics, usage patterns in existing telecom services such as mobile service, broadband internet and wireless internet and the status of ownership of a computing or information device and the desire or intention to purchase one. Through these steps, we were able to statistically prove that each of these 10 sub-groups responded to telecom services as independent markets. We found that each segmented group responds as an independent individual market. Through correspondence analysis, the target segmentation groups were positioned in such a way as to facilitate the entry of future telecommunication services into the market, as well as their diffusion and transferability.

  • PDF

The Effectiveness of Fiscal Policies for R&D Investment (R&D 투자 촉진을 위한 재정지원정책의 효과분석)

  • Song, Jong-Guk;Kim, Hyuk-Joon
    • Journal of Technology Innovation
    • /
    • v.17 no.1
    • /
    • pp.1-48
    • /
    • 2009
  • Recently we have found some symptoms that R&D fiscal incentives might not work well what it has intended through the analysis of current statistics of firm's R&D data. Firstly, we found that the growth rate of R&D investment in private sector during the recent decade has been slowdown. The average of growth rate (real value) of R&D investment is 7.1% from 1998 to 2005, while it was 13.9% from 1980 to 1997. Secondly, the relative share of R&D investment of SME has been decreased to 21%('05) from 29%('01), even though the tax credit for SME has been more beneficial than large size firm, Thirdly, The R&D expenditure of large size firms (besides 3 leading firms) has not been increased since late of 1990s. We need to find some evidence whether fiscal incentives are effective in increasing firm's R&D investment. To analyse econometric model we use firm level unbalanced panel data for 4 years (from 2002 to 2005) derived from MOST database compiled from the annual survey, "Report on the Survey of Research and Development in Science and Technology". Also we use fixed effect model (Hausman test results accept fixed effect model with 1% of significant level) and estimate the model for all firms, large firms and SME respectively. We have following results from the analysis of econometric model. For large firm: i ) R&D investment responds elastically (1.20) to sales volume. ii) government R&D subsidy induces R&D investment (0.03) not so effectively. iii) Tax price elasticity is almost unity (-0.99). iv) For large firm tax incentive is more effective than R&D subsidy For SME: i ) Sales volume increase R&D investment of SME (0.043) not so effectively. ii ) government R&D subsidy is crowding out R&D investment of SME not seriously (-0.0079) iii) Tax price elasticity is very inelastic (-0.054) To compare with other studies, Koga(2003) has a similar result of tax price elasticity for Japanese firm (-1.0036), Hall((l992) has a unit tax price elasticity, Bloom et al. (2002) has $-0.354{\sim}-0.124$ in the short run. From the results of our analysis we recommend that government R&D subsidy has to focus on such an areas like basic research and public sector (defense, energy, health etc.) not overlapped private R&D sector. For SME government has to focus on establishing R&D infrastructure. To promote tax incentive policy, we need to strengthen the tax incentive scheme for large size firm's R&D investment. We recommend tax credit for large size film be extended to total volume of R&D investment.

  • PDF

Impacts of Climate Change on Rice Production and Adaptation Method in Korea as Evaluated by Simulation Study (생육모의 연구에 의한 한반도에서의 기후변화에 따른 벼 생산성 및 적응기술 평가)

  • Lee, Chung-Kuen;Kim, Junwhan;Shon, Jiyoung;Yang, Woon-Ho;Yoon, Young-Hwan;Choi, Kyung-Jin;Kim, Kwang-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.207-221
    • /
    • 2012
  • Air temperature in Korea has increased by $1.5^{\circ}C$ over the last 100 years, which is nearly twice the global average rate during the same period. Moreover, it is projected that such change in temperature will continue in the 21st century. The objective of this study was to evaluate the potential impacts of future climate change on the rice production and adaptation methods in Korea. Climate data for the baseline (1971~2000) and the three future climate (2011~2040, 2041~2070, and 2071~2100) at fifty six sites in South Korea under IPCC SRES A1B scenario were used as the input to the rice crop model ORYZA2000. Six experimental schemes were carried out to evaluate the combined effects of climatic warming, $CO_2$ fertilization, and cropping season on rice production. We found that the average production in 2071~2100 would decrease by 23%, 27%, and 29% for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were fixed. In contrast, predicted yield reduction was ~0%, 6%, and 7%, for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were changed. Analysis of variation suggested that climatic warming, $CO_2$ fertilization, cropping season, and rice maturing type contributed 60, 10, 12, and 2% of rice yield, respectively. In addition, regression analysis suggested 14~46 and 53~86% of variations in rice yield were explained by grain number and filled grain ratio, respectively, when cropping season was fixed. On the other hand, 46~78 and 22~53% of variations were explained respectively with changing cropping season. It was projected that sterility caused by high temperature would have no effect on rice yield. As a result, rice yield reduction in the future climate in Korea would resulted from low filled grain ratio due to high growing temperature during grain-filling period because the $CO_2$ fertilization was insufficient to negate the negative effect of climatic warming. However, adjusting cropping seasons to future climate change may alleviate the rice production reduction by minimizing negative effect of climatic warming without altering positive effect of $CO_2$ fertilization, which improves weather condition during the grain-filling period.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

Development and evaluation of Pre-Parenthood Education Program for high school students based on Home Economics subject (고등학생을 위한 가정교과 기반 예비부모교육 프로그램 개발 및 평가)

  • Noh, Heui-Yeon;Cho, Jae Soon;Chae, Jung Hyun
    • Journal of Korean Home Economics Education Association
    • /
    • v.29 no.4
    • /
    • pp.161-193
    • /
    • 2017
  • The purpose of this study was to develop and evaluate pre-parenthood education program(PPEP) based on Home Economics(HE) subject for high school students. The development and evaluation of PPEP based on HE subject in this study followed ADDIE model except implementation through 4 processes such as analysis, design, development, and evaluation. First, program development directions were set in three aspects such as 'general development', 'contents', and 'teaching and learning methods'. Themes of the program are 11 in total such as '1. Parenting, what is being a parent', '2. Choosing your spouse, happy marital relationship, the best gift to your children', '3. Pregnancy and birth, a moving meeting with a new life', '4. Taking care of a new born infant for 24 hours', '5. Taking care of infants, relationship with my lovely baby, attachment', '6. Taking care of young children, my child from another planet', '7. Parents and children in healthy family', '8. Parent-child relationship, wise parents to make effective interaction with their children', '9. Parents safety manager at home,', '10. Practice to take care of infants', and '11. Practice of community nurturing support service development'. In particular, learning activities of the program have major characteristics such as 1) utilization of cases including practice problems related to parenting, 2) community exchange activities utilizing learned knowledge and techniques, 3) actual life project activities utilizing learning contents related with parenting, 4) activities inducing positive changes in current life of high school students, and 5) practice activities for the necessities of life such as food, clothing and shelter supporting development of children. Second, the program was developed according to the design. Teaching-learning plans and materials for 17 classes were developed according to 11 themes. The developed plans include class flow and teacher's reference. It starts with receiving a class-related message from a virtual child at the introduction stage and ended with replying to the message by summarizing contents of the class and making a promise as a parent-to-be. That is the basic frame of class flow. Learning materials included various plans and reports necessary for learning activities and they are prepared in details so that they can be play the role of textbooks in regular curriculum. Third, evaluation of developed program was executed by a 5 point Likert scale survey on 13 HE experts on two aspects of program development process and program development results. In the evaluation of development process, mean value was 4.61 and index of content validity was 97.4%. For development results, mean value was 4.37 and index of content validity was 86.9%. These values showed that validity in the development process and results in this study was highly secured and confirmed that PPEP based on HE was appropriate and valid to enhance parent qualifications of high school learners.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

Effects of Methyl Ethyl Ketone and Methanol on the Survival and Reproduction of Paronychiurus kimi (Collembola: Onychiuridae) (메틸에틸케톤과 메탄올이 김어리톡토기의 사망 및 번식에 미치는 영향)

  • Wee, June;Lee, Yun-Sik;Son, Jino;Kim, Yongeun;Mo, Hyoung-ho;Cho, Kijong
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.169-174
    • /
    • 2017
  • Acute and chronic toxicities of methyl ethyl ketone and methanol were investigated on Paronychiurus kimi (Collembola), for evaluating the potential effects of accidental exposures of these chemical substances on the terrestrial environments. This study was undertaken to establish a toxicity database for these chemical substances, which was required for the preparation of the response compensation and liability act for agricultural production and environmental damage. The 7-d acute toxicity and 28-d chronic toxicity were conducted using the OECD artificial soil spiked with varying, serially diluted concentrations of methyl ethyl ketone and methanol. Mortality was recorded after 7-d and 28-d of exposures, and the number of juveniles were determined after 28-d of exposure in the chronic toxicity test. In both assessments, methanol was more toxic than methyl ethyl ketone in terms of mortality ($LC_{50}$) and reproduction ($EC_{50}$). The 7-d $LC_{50}$ of methyl ethyl ketone and methanol were 762 and $2378mg\;kg^{-1}$ soil dry wt., respectively, and the 28-d $LC_{50}s$ were 6063 and $1857mg\;kg^{-1}$ soil dry wt., respectively. The 28-d $EC_{50}$ of methyl ethyl ketone and methanol were 265 and $602mg\;kg^{-1}$ soil dry wt., respectively. Comparison of results obtained in this study with literature data revealed that P. kimi was more sensitive to methanol than other soil invertebrates. However, given the high volatility of the chemicals tested in this study, further studies are necessary to improve the current test guideline, or to develop new test guidelines for an accurate assessment of chemicals that require toxicity databases for chemical accidents.