• Title/Summary/Keyword: 모폴로지 연산

Search Result 102, Processing Time 0.021 seconds

Object Detection Method in Sea Environment Using Fast Region Merge Algorithm (해양환경에서 고속 영역 병합 알고리즘을 이용한 물표 탐지 기법)

  • Jeong, Jong-Myeon;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.610-616
    • /
    • 2012
  • In this paper, we present a method to detect an object such as ship, rock and buoy from sea IR image for the safety navigation. To this end, we do the image smoothing first and the apply watershed algorithm to segment image into subregions. Since watershed algorithm almost always produces over-segmented regions, it requires posterior merging process to get meaningful segmented regions. We propose an efficient merger algorithm that requires only two times of direct access to the pixels regardless of the number of regions. Also by analyzing IR image obtained from sea environments, we could find out that most horizontal edge come out from object regions. For the given input IR image we extract horizontal edge and eliminate isolated edges produced from background and noises by adopting morphological operator. Among the segmented regions, the regions that have horizontal edges are extracted as final results. Experimental results show the adequacy of the proposed method.

A Study on Monitoring System for an Abnormal Behaviors by Object's Tracking (객체 추적을 통한 이상 행동 감시 시스템 연구)

  • Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.589-596
    • /
    • 2013
  • With the increase of social crime rate, the interest on the intelligent security system is also growing. This paper proposes a detection system of monitoring whether abnormal behavior is being carried in the images captured using CCTV. After detection of an object via subtraction from background image and morpholgy, this system extracts an abnormal behavior by each object's feature information and its trajectory. When an object is loitering for a while in CCTV images, this system considers the loitering as an abnormal behavior and sends the alarm signal to the control center to facilitate prevention in advance. Especially, this research aims at detecting a loitoring act among various abnormal behaviors and also extends to the detection whether an incoming object is identical to one of inactive objects out of image.

Opto-Digital Implementation of Convergence-Controlled Stereo Target Tracking System (주시각이 제어된 스테레오 물체추적 시스템의 광-디지털적 구현)

  • 고정환;이재수;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.353-364
    • /
    • 2002
  • In this paper, a new onto-digital stereo object-tracking system using hierarchical digital algorithms and optical BPEJTC is proposed. This proposed system can adaptively track a moving target by controlling the convergence of stereo camera. firstly, the target is detected through the background matching of the sequential input images by using optical BPEJTC and then the target area is segmented by using the target projection mask which is composed by hierarchical digital processing of image subtraction, logical operation and morphological filtering. Secondly, the location's coordinate of the moving target object for each of the sequential input frames can be extracted through carrying out optical BPEJTC between the reference image of the target region mask and the stereo input image. Finally, the convergence and pan/tilt of stereo camera can be sequentially controlled by using these target coordinate values and the target can be kept in tracking. Also, a possibility of real-time implementation of the adaptive stereo object tracking system is suggested through optically implementing the proposed target extraction and convergence control algorithms.

A Study on Improvement of Vision Inspector for T Type Welding nut auto Sorting System using a Masked Histogram Equalization (마스크 히스토그램 평준화를 이용한 T형 용접너트 자동 선별시스템의 비전검사기 성능개선에 관한 연구)

  • Hur, Tae-Won;Song, Han-Lim
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.353-361
    • /
    • 2012
  • In this paper, we propose a improvement method of vision inspector for T type welding nut using an auto sorting system. We used edge and thread detection with histogram of image which is captured by machine vision camera. We also used a binary morphology operation for a detection of spot. A major problem in this vision inspector is abnormal operation caused by degradation of image acquired. These degradations caused by oil pollution on conveyer belt. For overcome this problem, we introduce a pre-processing using a masked histogram equalization on the image acquired. Histogram equalization is applied on masked region (nut part) for increase contrast. As a result, we can remove features caused by oil pollution on background and reduce a ratio of abnormal operation from 10.0 % to 0.2 %.

Fingertip Extraction and Hand Motion Recognition Method for Augmented Reality Applications (증강현실 응용을 위한 손 끝점 추출과 손 동작 인식 기법)

  • Lee, Jeong-Jin;Kim, Jong-Ho;Kim, Tae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.316-323
    • /
    • 2010
  • In this paper, we propose fingertip extraction and hand motion recognition method for augmented reality applications. First, an input image is transformed into HSV color space from RGB color space. A hand area is segmented using double thresholding of H, S value, region growing, and connected component analysis. Next, the end points of the index finger and thumb are extracted using morphology operation and subtraction for a virtual keyboard and mouse interface. Finally, the angle between the end points of the index finger and thumb with respect to the center of mass point of the palm is calculated to detect the touch between the index finger and thumb for implementing the click of a mouse button. Experimental results on various input images showed that our method segments the hand, fingertips, and recognizes the movements of the hand fast and accurately. Proposed methods can be used the input interface for augmented reality applications.

A Technique for Image Processing of Concrete Surface Cracks (콘크리트 표면 균열의 영상 처리 기법)

  • Kim Kwang-Baek;Cho Jae-Hyun;Ahn Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1575-1581
    • /
    • 2005
  • Recently, further study is being done on the affect of crack on concrete structure and many people have made every endeavor not to leave it unsettled but to minimize it by repair works. In this paper we propose the image processing method that do not remain manual but automatically process the length, the direction and e width of cracks on concrete surface. First, we calibrate light's affect from image by using closing operation, one of morphology methods that can extract the feature of oracle and we extract the edge of crack image by sobel mask. After it, crack image is binarized by iteration binarization. And we extract the edge of cracks using noise elimination method that use an average of adjacent pixels by 3${\times}$3 mask and Glassfire Labeling algorithm. on, in this paper we propose an image processing method which can automatically measure the length, the direction and the width of cracks using the extracted edges of cracks. The results of experiment showed that the proposed method works better on the extraction of concrete cracks. Also our method showed the possibility that inspector's decision is unnecessary.

A Study on Recognition of Moving Object Crowdedness Based on Ensemble Classifiers in a Sequence (혼합분류기 기반 영상내 움직이는 객체의 혼잡도 인식에 관한 연구)

  • An, Tae-Ki;Ahn, Seong-Je;Park, Kwang-Young;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.95-104
    • /
    • 2012
  • Pattern recognition using ensemble classifiers is composed of strong classifier which consists of many weak classifiers. In this paper, we used feature extraction to organize strong classifier using static camera sequence. The strong classifier is made of weak classifiers which considers environmental factors. So the strong classifier overcomes environmental effect. Proposed method uses binary foreground image by frame difference method and the boosting is used to train crowdedness model and recognize crowdedness using features. Combination of weak classifiers makes strong ensemble classifier. The classifier could make use of potential features from the environment such as shadow and reflection. We tested the proposed system with road sequence and subway platform sequence which are included in "AVSS 2007" sequence. The result shows good accuracy and efficiency on complex environment.

An Illumination and Background-Robust Hand Image Segmentation Method Based on the Dynamic Threshold Values (조명과 배경에 강인한 동적 임계값 기반 손 영상 분할 기법)

  • Na, Min-Young;Kim, Hyun-Jung;Kim, Tae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.607-613
    • /
    • 2011
  • In this paper, we propose a hand image segmentation method using the dynamic threshold values on input images with various lighting and background attributes. First, a moving hand silhouette is extracted using the camera input difference images, Next, based on the R,G,B histogram analysis of the extracted hand silhouette area, the threshold interval for each R, G, and B is calculated on run-time. Finally, the hand area is segmented using the thresholding and then a morphology operation, a connected component analysis and a flood-fill operation are performed for the noise removal. Experimental results on various input images showed that our hand segmentation method provides high level of accuracy and relatively fast stable results without the need of the fixed threshold values. Proposed methods can be used in the user interface of mixed reality applications.

Recognition Performance Improvement of QR and Color Codes Posted on Curved Surfaces (곡면상에 부착된 QR 코드와 칼라 코드의 인식률 개선)

  • Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.267-275
    • /
    • 2019
  • Currently, due to the widespread use of a smartphone, QR codes allow users to access a variety of added services. However, the QR codes posted on curved surfaces tend to be non-uniformly illuminated and bring about the decline of recognition rate. So, in this paper, the block-adaptive binarization policy is adopted to find an optimal threshold appropriate for bimodal image like QR codes. For a large block, its histogram distribution is found to get an initial threshold and then the block is partitioned to reflect the local characteristics of small blocks. Also, morphological operation is applied to their neighboring boundary at the discontinuous at the QR code junction. This paper proposes an authentication method based on the color code, uniquely painted within QR code. Through a variety of practical experiments, it is shown that the proposed algorithm outperforms the conventional method in detecting QR code and also maintains good recognition rate up to 40 degrees on curved surfaces.

Secure Self-Driving Car System Resistant to the Adversarial Evasion Attacks (적대적 회피 공격에 대응하는 안전한 자율주행 자동차 시스템)

  • Seungyeol Lee;Hyunro Lee;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.907-917
    • /
    • 2023
  • Recently, a self-driving car have applied deep learning technology to advanced driver assistance system can provide convenience to drivers, but it is shown deep that learning technology is vulnerable to adversarial evasion attacks. In this paper, we performed five adversarial evasion attacks, including MI-FGSM(Momentum Iterative-Fast Gradient Sign Method), targeting the object detection algorithm YOLOv5 (You Only Look Once), and measured the object detection performance in terms of mAP(mean Average Precision). In particular, we present a method applying morphology operations for YOLO to detect objects normally by removing noise and extracting boundary. As a result of analyzing its performance through experiments, when an adversarial attack was performed, YOLO's mAP dropped by at least 7.9%. The YOLO applied our proposed method can detect objects up to 87.3% of mAP performance.