• Title/Summary/Keyword: 모폴로지 연산

Search Result 100, Processing Time 0.038 seconds

A Study on Character Segmentation in Car Plates (번호판에서의 문자 세그멘테이션에 관한 연구)

  • Lee, Sang-Hoon;Kim, Kyung-Hyun;Kim, Chun-Lin;Cha, Eui-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.623-626
    • /
    • 2003
  • 본 논문에서는 현재 자동차 번호판의 형식이 구 번호판과 신 번호판 두 가지 유형으로 구성되어 있다는 점을 고려하여 번호판의 세부적 세그멘테이션의 성능을 개선하는 방법에 대하여 제시한다. 컴퓨터 비젼을 바탕으로 한 자동차 번호판의 인식방법과 문자인식방법은 비용면이나 간편성에서 맡은 장점을 가지고 있으며 여러 응용분야에서 사용될 수 있기 때문에 다방면에서 시도되고 있다. 본 시스템은 모폴로지 연산과 클러스트링을 이용하여 자동차 번호판 전체 영역을 추출하는 방법을 사용한다. 다음으로 구번호판에서 신번호판으로 넘어가는 과도기적 단계에 있는 번호판들의 특징인 용도기능의 표시문자의 위치 차이를 이용하여 구 번호판과 신번호판을 먼저 분류한다. 분류된 번호판에서 두 번호판의 차이점인 차종기초 표시영역의 숫자를 나누어서 세그멘테이션함으로서 기존의 연구방법보다 개선된 세그멘테이션 능력과 이로 인하여 향상된 번호판 인식결과를 얻을 수 있다.

  • PDF

Text Location in Scene Images (자연 영상에서 문자열 추출)

  • 최미화;김희승
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.389-391
    • /
    • 2000
  • 본 논문을 자연여상에서 문자열의 위치를 찾아내는데 모폴로지 연산인 WTH(white top-hats)과 BTH(black top-hars)을 사용하였다. 기존의 자연영상에서의 문자열추출은 칼라양자화방법 경우 각 칼라공간에서 문자열 추출과정을 반복 적용하거나 모델기반방법의 경우 문자열의 획의 크기나 특징에 따라서 하나의 영상을 여러 개로 분리 적용하여 추가적인 계산비용을 필요로 한다는 점을 개선하고 공간적 변화도를 이용하여 영상을 직접 처리하는 경우 최소 문자열 후보영역을 찾기 위한 프로세스를 다시 적용해야 한다는 점을 개선하였다. 자연영상에 문자열의 위치를 대략적으로 찾아내기 위해 WTH+BTH을 적용하여 그 결과로 문자열의 대략적 위치와 최소문자열후보영역을 동시에 얻을 수 있다. 문자열이 가지는 특성을 적용하여 문자열-비문자열 분류과정을 적용하고 후처리를 통해 완전한 문자열의 위치를 보여준다.

  • PDF

An Implementation of Sign Board Recognition System (옥외 광고물 인식 시스템 구현)

  • Park, Ji-Hoo;Hwang, Hong-Baek;Jung, Su-Bong;Choi, Yeung-Ho;Bang, Seon-Ae;Kwon, Soon-Kak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.598-601
    • /
    • 2010
  • 개인용 단말기 디스플레이 상의 광고물 객체의 기준점 설정하여 좌표 값, 색상 값을 받은 후 그 정보를 기반으로 광고물의 경계선을 추출한다. 경계선에서 추출된 4 모서리의 좌표와 거리 측정기를 통하여 측정한 거리 값을 통해 여러 위치에서도 광고물의 면적을 측정하는 시스템을 구현한다.

  • PDF

Face Tracking and Recognition Algorithm Based On Object Segmentation and PCA (객체 분할 및 주성분 분석 기반의 얼굴 추적 인식 알고리즘)

  • 성민영;김대현;이응주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.435-440
    • /
    • 2003
  • 본 논문에서는 실시간 출입통제시스템에 적용이 가긍한 복잡한 배경에서의 다중 얼굴 영역 검출과 추적을 통한 얼굴 인식 알고리즘을 제안하였다. 제안된 알고리즘에서는 배경영상과 입력된 연속적인 프레임간의 차영상을 적용함으로써 물체의 움직임을 감지한 후. IISI컬러 좌표모델을 이용하여 얼굴의 1차 후보 영역을 검출하고, 잡음제거를 위해 모폴로지 연산을 수행하였다 또한 Line Projection을 이용한 객체 분할법(Object Segmentation)으로 객체를 분할함으로써 다중 얼굴 영역을 추출하였다. 또한 추출된 얼굴영역에서 눈 영역 검출을 통해 각각의 얼굴 영역들을 검증하였으며 검증된 얼굴들의 최외각 4개의 좌표를 이용하여 얼굴 추적율을 높였다. 마지막으로 얼굴 인식은 추출된 얼굴 영역으로부터 주성분 분석(PCA : Principle Component Analysis)방법을 이용함으로써 97~98%의 높은 인식율을 보였다.

  • PDF

Real time speed-limit sign recognition invariant to image scale (영상 크기변화에 강인한 실시간 속도표지판 인식)

  • Hwang, MinCheol;Ko, ByoungChul;Nam, Jae-Yeal
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1358-1360
    • /
    • 2015
  • 본 논문에서는 MB-LBP(Multi-scale Block Local Binary Patterns)와 공간피라미드를 이용하여 생성된 특징을 랜덤 포레스트(Random Forest) 분류기에 적용하여 영상내의 표지판 속도를 인식하는 알고리즘을 제안한다. 입력 영상에서 표지판 영역은 다양한 위치와 크기를 가지며 주위 배경이 후보 영역에 포함되므로 먼저 입력 영상에 원형 Hough Transform을 적용하여 원형의 표지판 후보 영역만을 검출한다. 그 후 영상의 화질을 향상시키기 위해 히스토그램 평활화와 모폴로지 연산을 적용하여 표지판의 숫자 영역과 배경 영역의 대비를 높이도록 한다. 표지판의 크기 변화에 강건한 시스템의 구현을 위해 후보 영역에서 LBP(Local Binary Patterns)보다 우수한 성능을 보이는 MB-LBP를 적용하고, 다양한 크기의 속도 표지판을 인식하기 위해 공간 피라미드를 사용하여 지역적 특징과 전역적 특징 모두를 추출하였다. 추출된 특징은 랜덤 포레스트(Random Forest)를 이용하여 각 9개의 속도 표지판으로 분류, 각 속도별 클래스에 대한 인식 성능을 측정하였다.

A Moving Object Tracking using Color and OpticalFlow Information (컬러 및 광류정보를 이용한 이동물체 추적)

  • Gim, Ju-Hyeon;Choi, Han-Go
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.319-322
    • /
    • 2013
  • 본 연구에서는 이동 객체를 컬러기반에서 추적하는데 있어 주변 환경 변화와 추적중인 객체 색상이 유사한 물체가 존재할 경우 보다 안정적으로 추적할 수 있는 방법을 제시한다. 백그라운드 차영상과 모폴로지 연산을 통하여 이동 객체를 검출하고, 매 프레임마다 발생하는 밝기 및 주변 환경의 영향을 고려하여 기존의 CamShift 알고리즘을 보완하였다. 추적 물체와 색상이 비슷한 주변 물체가 존재할 경우 개선된 CamShift는 불안정한 추적을 보여주었는데 이를 해결하기 위해 Optical Flow기반의 KLT 알고리즘과 병합하는 방법을 제시하였다. 실험 결과를 통해 제안된 추적 방법은 기존의 단점을 보완하였으며 추적성능이 개선됨을 확인하였다.

Outline detection of pills using circular kernel and B-Spline (원형 커널과 B-Spline을 이용한 알약 외곽선 검출)

  • Hong, June-hyeok;Jung, Ji-hoon;Park, June-oh;Ko, Byoung-chul;Nam, Jae-Yeal
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.338-340
    • /
    • 2011
  • 본 논문에서는 조제용 알약영상에서 자동 조제 결과를 검증하기 위한 방법의 전 단계로 알약의 외곽선을 검출 하는 방법을 제시한다. 입력 알약 조제 영상에 대해 원형 모양의 커널을 씌우고, 모폴로지 연산을 통해 대략적인 알약의 모양을 생성한다. 이후에, 알약 외곽선으로 부터 일정 간격으로 픽셀을 샘플링하여 B-Spline곡선으로 보간 함으로써 글씨 및 바코드로 인한 잡영을 제거 하였다. 이렇게 생성된 알약의 외곽선 영상은 약품 처방전에 명시되어 있는 대로 약품이 처방되어 있는지는 검증하는데 사용될 수 있는 중요한 요소 기술이다.

Plant leaf area estimation using synthetic dataset and deep learning model (합성 데이터셋과 딥러닝 모델을 이용한 식물 엽면적 추정)

  • Suh, Hyun Kwon;Ahn, Juyeon;Park, Hyeonji
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.90-92
    • /
    • 2022
  • 이 논문에서는 합성된 애기장대 데이터셋을 활용하여 딸기의 엽면적을 추정할 수 있는 딥러닝 모델을 제안한다. 제안된 모델에서는 개별 잎 검출을 위하여 합성 데이터셋으로 학습된 Mask R-CNN 의 객체 검출 모델을 사용하였고, 이어 이미지 후처리 작업에 해당되는 모폴로지 연산의 침식 및 팽창, 픽셀 카운터를 통해 엽면적을 추정하였다. 각기 다른 역할을 수행하는 신경망 계층에 어텐션 메커니즘 적용하여 검출 성능의 향상과 검출 시간을 단축하였다. 제안된 모델은 딸기 데이터셋을 사용하지 않는 합성된 데이터셋만으로도 실제 온실에서 획득한 다양한 이미지에서의 딸기 엽면적을 추정하는 데에 우수한 성능을 보여준다.

  • PDF

An Automatic Mobile Cell Counting System for the Analysis of Biological Image (생물학적 영상 분석을 위한 자동 모바일 셀 계수 시스템)

  • Seo, Jaejoon;Chun, Junchul;Lee, Jin-Sung
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • This paper presents an automatic method to detect and count the cells from microorganism images based on mobile environments. Cell counting is an important process in the field of biological and pathological image analysis. In the past, cell counting is done manually, which is known as tedious and time consuming process. Moreover, the manual cell counting can lead inconsistent and imprecise results. Therefore, it is necessary to make an automatic method to detect and count cells from biological images to obtain accurate and consistent results. The proposed multi-step cell counting method automatically segments the cells from the image of cultivated microorganism and labels the cells by utilizing topological analysis of the segmented cells. To improve the accuracy of the cell counting, we adopt watershed algorithm in separating agglomerated cells from each other and morphological operation in enhancing the individual cell object from the image. The system is developed by considering the availability in mobile environments. Therefore, the cell images can be obtained by a mobile phone and the processed statistical data of microorganism can be delivered by mobile devices in ubiquitous smart space. From the experiments, by comparing the results between manual and the proposed automatic cell counting we can prove the efficiency of the developed system.

Noise-robust Hand Region Segmentation In RGB Color-based Real-time Image (RGB 색상 기반의 실시간 영상에서 잡음에 강인한 손영역 분할)

  • Yang, Hyuk Jin;Kim, Dong Hyun;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1603-1613
    • /
    • 2017
  • This paper proposes a method for effectively segmenting the hand region using a widely popular RGB color-based webcam. This performs the empirical preprocessing method four times to remove the noise. First, we use Gaussian smoothing to remove the overall image noise. Next, the RGB image is converted into the HSV and the YCbCr color model, and global fixed binarization is performed based on the statistical value for each color model, and the noise is removed by the bitwise-OR operation. Then, RDP and flood fill algorithms are used to perform contour approximation and inner area fill operations to remove noise. Finally, ROI (hand region) is selected by eliminating noise through morphological operation and determining a threshold value proportional to the image size. This study focuses on the noise reduction and can be used as a base technology of gesture recognition application.