• Title/Summary/Keyword: 모폴로지 연산

Search Result 100, Processing Time 0.023 seconds

Identifying Analog Gauge Needle Objects Based on Image Processing for a Remote Survey of Maritime Autonomous Surface Ships (자율운항선박의 원격검사를 위한 영상처리 기반의 아날로그 게이지 지시바늘 객체의 식별)

  • Hyun-Woo Lee;Jeong-Bin Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.410-418
    • /
    • 2023
  • Recently, advancements and commercialization in the field of maritime autonomous surface ships (MASS) has rapidly progressed. Concurrently, studies are also underway to develop methods for automatically surveying the condition of various on-board equipment remotely to ensure the navigational safety of MASS. One key issue that has gained prominence is the method to obtain values from analog gauges installed in various equipment through image processing. This approach has the advantage of enabling the non-contact detection of gauge values without modifying or changing already installed or planned equipment, eliminating the need for type approval changes from shipping classifications. The objective of this study was to identify a dynamically changing indicator needle within noisy images of analog gauges. The needle object must be identified because its position significantly affects the accurate reading of gauge values. An analog pressure gauge attached to an emergency fire pump model was used for image capture to identify the needle object. The acquired images were pre-processed through Gaussian filtering, thresholding, and morphological operations. The needle object was then identified through Hough Transform. The experimental results confirmed that the center and object of the indicator needle could be identified in images of noisy analog gauges. The findings suggest that the image processing method applied in this study can be utilized for shape identification in analog gauges installed on ships. This study is expected to be applicable as an image processing method for the automatic remote survey of MASS.

Pace and Facial Element Extraction in CCD-Camera Images by using Snake Algorithm (스네이크 알고리즘에 의한 CCD 카메라 영상에서의 얼굴 및 얼굴 요소 추출)

  • 판데홍;김영원;김정연;전병환
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.535-542
    • /
    • 2002
  • 최근 IT 산업이 급성장하면서 화상 회의, 게임, 채팅 등에서의 아바타(avatar) 제어를 위한 자연스러운 인터페이스 기술이 요구되고 있다. 본 논문에서는 동적 윤곽선 모델(active contour models; snakes)을 이용하여 복잡한 배경이 있는 컬러 CCD 카메라 영상에서 얼굴과 눈, 입, 눈썹, 코 등의 얼굴 요소에 대해 윤곽선을 추출하거나 위치를 파악하는 방법을 제안한다. 일반적으로 스네이크 알고리즘은 잡음에 민감하고 초기 모델을 어떻게 설정하는가에 따라 추출 성능이 크게 좌우되기 때문에 주로 단순한 배경의 영상에서 정면 얼굴의 추출에 사용되어왔다 본 연구에서는 이러한 단점을 파악하기 위해, 먼저 YIQ 색상 모델의 I 성분을 이용한 색상 정보와 차 영상 정보를 사용하여 얼굴의 최소 포함 사각형(minimum enclosing rectangle; MER)을 찾고, 이 얼굴 영역 내에서 기하학적인 위치 정보와 에지 정보를 이용하여 눈, 입, 눈썹, 코의 MER을 설정한다. 그런 다음, 각 요소의 MER 내에서 1차 미분과 2차 미분에 근거한 내부 에너지와 에지에 기반한 영상 에너지를 이용한 스네이크 알고리즘을 적용한다. 이때, 에지 영상에서 얼굴 주변의 복잡한 잡음을 제거하기 위하여 색상 정보 영상과 차 영상에 각각 모폴로지(morphology)의 팽창(dilation) 연산을 적용하고 이들의 AND 결합 영상에 팽창 연산을 다시 적용한 이진 영상을 필터로 사용한다. 총 7명으로부터 양 눈이 보이는 정면 유사 방향의 영상을 20장씩 취득하여 총 140장에 대해 실험한 결과, MER의 오차율은 얼굴, 눈, 입에 대해 각각 6.2%, 11.2%, 9.4%로 나타났다. 또한, 스네이크의 초기 제어점을 얼굴은 44개, 눈은 16개, 입은 24개로 지정하여 MER추출에 성공한 영상에 대해 스네이크 알고리즘을 수행한 결과, 추출된 영역의 오차율은 각각 2.2%, 2.6%, 2.5%로 나타났다.해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having the same condition of

  • PDF

Facial Contour Extraction in PC Camera Images using Active Contour Models (동적 윤곽선 모델을 이용한 PC 카메라 영상에서의 얼굴 윤곽선 추출)

  • Kim Young-Won;Jun Byung-Hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.633-638
    • /
    • 2005
  • The extraction of a face is a very important part for human interface, biometrics and security. In this paper, we applies DCM(Dilation of Color and Motion) filter and Active Contour Models to extract facial outline. First, DCM filter is made by applying morphology dilation to the combination of facial color image and differential image applied by dilation previously. This filter is used to remove complex background and to detect facial outline. Because Active Contour Models receive a large effect according to initial curves, we calculate rotational degree using geometric ratio of face, eyes and mouth. We use edgeness and intensity as an image energy, in order to extract outline in the area of weak edge. We acquire various head-pose images with both eyes from five persons in inner space with complex background. As an experimental result with total 125 images gathered by 25 per person, it shows that average extraction rate of facial outline is 98.1% and average processing time is 0.2sec.

  • PDF

A Study on a Violence Recognition System with CCTV (CCTV에서 폭력 행위 감지 시스템 연구)

  • Shim, Young-Bin;Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • With the increased frequency of crime such as assaults and sexual violence, the reliance on CCTV in arresting criminals has increased as well. However, CCTV, which should be monitored by human labor force at all times, has limits in terms of budget and man-power. Thereby, the interest in intelligent security system is growing nowadays. Expanding the techniques of an objects behavior recognition in previous studies, we propose a system to detect forms of violence between 2~3 objects from images obtained in CCTV. It perceives by detecting the object with the difference operation and the morphology of the background image. The determinant criteria to define violent behaviors are suggested. Moreover, provable decision metric values through measurements of the number of violent condition are derived. As a result of the experiments with the threshold values, showed more than 80% recognition success rate. A future research for abnormal behaviors recognition system in a crowded circumstance remains to be developed.

Object Detection Algorithm Using Edge Information on the Sea Environment (해양 환경에서 에지 정보를 이용한 물표 추출 알고리즘)

  • Jeong, Jong-Myeon;Park, Gyei-Kark
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.69-76
    • /
    • 2011
  • According to the related reports, about 60 percents of ship collisions have resulted from operating mistake caused by human factor. Specially, the report said that negligence of observation caused 66.8 percents of the accidents due to a human factor. Hence automatic detection and tracking of an object from an IR images are crucial for safety navigation because it can relieve officer's burden and remedies imperfections of human visual system. In this paper, we present a method to detect an object such as ship, rock and buoy from a sea IR image. Most edge directions of the sea image are horizontal and most vertical edges come out from the object areas. The presented method uses them as a characteristic for the object detection. Vertical edges are extracted from the input image and isolated edges are eliminated. Then morphological closing operation is performed on the vertical edges. This caused vertical edges that actually compose an object be connected and become an object candidate region. Next, reference object regions are extracted using horizontal edges, which appear on the boundaries between surface of the sea and the objects. Finally, object regions are acquired by sequentially integrating reference region and object candidate regions.

A license plate detection method based on contour extraction that adapts to environmental changes (주변 환경 변화에 적응하는 윤곽선 추출 기반의 자동차 번호판 검출 기법)

  • Pyo, Sung-Kook;Lee, Gang-seong;Park, Young-Soo;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.31-39
    • /
    • 2018
  • In this paper, we proposed a license plate detection method based on contour extraction that adapts to environmental changes. The proposed method extracts contour lines using DoG (Difference of Gaussian) to remove unnecessary noise parts in the contour extraction process. Binarization was applied in ugly outline images, and erosion and dilation operations were used to emphasize the contour of the character part. Then, only the outline of the ratio of the characters of the plate was extracted through the ratio of the width and height of the characters. And the case where the outline is the longest is estimated by estimating the characters of the license plate. For the experiment, we applied 130 image data to license plate on the front of the vehicle, oblique environment, and environment images with various backgrounds. I also experimented with motorcycle images of different license plate patterns. Experimental results showed that the detection rate of the oblique image was 93% and that of the various background environment was 70% in the motorcycle image but 98% in the front image.

ACMs-based Human Shape Extraction and Tracking System for Human Identification (개인 인증을 위한 활성 윤곽선 모델 기반의 사람 외형 추출 및 추적 시스템)

  • Park, Se-Hyun;Kwon, Kyung-Su;Kim, Eun-Yi;Kim, Hang-Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • Research on human identification in ubiquitous environment has recently attracted a lot of attention. As one of those research, gait recognition is an efficient method of human identification using physical features of a walking person at a distance. In this paper, we present a human shape extraction and tracking for gait recognition using geodesic active contour models(GACMs) combined with mean shift algorithm The active contour models (ACMs) are very effective to deal with the non-rigid object because of its elastic property. However, they have the limitation that their performance is mainly dependent on the initial curve. To overcome this problem, we combine the mean shift algorithm with the traditional GACMs. The main idea is very simple. Before evolving using level set method, the initial curve in each frame is re-localized near the human region and is resized enough to include the targe region. This mechanism allows for reducing the number of iterations and for handling the large object motion. The proposed system is composed of human region detection and human shape tracking modules. In the human region detection module, the silhouette of a walking person is extracted by background subtraction and morphologic operation. Then human shape are correctly obtained by the GACMs with mean shift algorithm. In experimental results, the proposed method show that it is extracted and tracked efficiently accurate shape for gait recognition.

  • PDF

Implementation of a walking-aid light with machine vision-based pedestrian signal detection (머신비전 기반 보행신호등 검출 기능을 갖는 보행등 구현)

  • Jihun Koo;Juseong Lee;Hongrae Cho;Ho-Myoung An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, we propose a machine vision-based pedestrian signal detection algorithm that operates efficiently even in computing resource-constrained environments. This algorithm demonstrates high efficiency within limited resources and is designed to minimize the impact of ambient lighting by sequentially applying HSV color space-based image processing, binarization, morphological operations, labeling, and other steps to address issues such as light glare. Particularly, this algorithm is structured in a relatively simple form to ensure smooth operation within embedded system environments, considering the limitations of computing resources. Consequently, it possesses a structure that operates reliably even in environments with low computing resources. Moreover, the proposed pedestrian signal system not only includes pedestrian signal detection capabilities but also incorporates IoT functionality, allowing wireless integration with a web server. This integration enables users to conveniently monitor and control the status of the signal system through the web server. Additionally, successful implementation has been achieved for effectively controlling 50W LED pedestrian signals. This proposed system aims to provide a rapid and efficient pedestrian signal detection and control system within resource-constrained environments, contemplating its potential applicability in real-world road scenarios. Anticipated contributions include fostering the establishment of safer and more intelligent traffic systems.

An Approach for the Antarctic Polar Front Detection and an Analysis for itsVariability (남극 극 전선 탐지를 위한 접근법과 변동성에 대한 연구)

  • Park, Jinku;Kim, Hyun-cheol;Hwang, Jihyun;Bae, Dukwon;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1179-1192
    • /
    • 2018
  • In order to detect the Antarctic Polar Front (PF) among the main fronts in the Southern Ocean, this study is based on the combinations of satellite-based sea surface temperature (SST) and height (SSH) observations. For accurate PF detection, we classified the signals as front or non-front grids based on the Bayesian decision theory from daily SST and SSH datasets, and then spatio-temporal synthesis has been performed to remove primary noises and to supplement geographical connectivity of the front grids. In addition, sea ice and coastal masking were employed in order to remove the noise that still remains even after performing the processes and morphology operations. Finally, we selected only the southernmost grids, which can be considered as fronts and determined as the monthly PF by a linear smoothing spline optimization method. The mean positions of PF in this study are very similar to those of the PFs reported by the previous studies, and it is likely to be well represents PF formation along the bottom topography known as one of the major influences of the PF maintenance. The seasonal variation in the positions of PF is high in the Ross Sea sector (${\sim}180^{\circ}W$), and Australia sector ($120^{\circ}E-140^{\circ}E$), and these variations are quite similar to the previous studies. Therefore, it is expected that the detection approach for the PF position applied in this study and the final composite have a value that can be used in related research to be carried out on the long term time-scale.

Facial Contour Extraction in Moving Pictures by using DCM mask and Initial Curve Interpolation of Snakes (DCM 마스크와 스네이크의 초기곡선 보간에 의한 동영상에서의 얼굴 윤곽선 추출)

  • Kim Young-Won;Jun Byung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.58-66
    • /
    • 2006
  • In this paper, we apply DCM(Dilation of Color and Motion information) mask and Active Contour Models(Snakes) to extract facial outline in moving pictures with complex background. First, we propose DCM mask which is made by applying morphology dilation and AND operation to combine facial color and motion information, and use this mask to detect facial region without complex background and to remove noise in image energy. Also, initial curves are automatically set according to rotational degree estimated with geometric ratio of facial elements to overcome the demerit of Active Contour Models which is sensitive to initial curves. And edge intensity and brightness are both used as image energy of snakes to extract contour at parts with weak edges. For experiments, we acquired total 480 frames with various head-poses of sixteen persons with both eyes shown by taking pictures in inner space and also by capturing broadcasting images. As a result, it showed that more elaborate facial contour is extracted at average processing time of 0.28 seconds when using interpolated initial curves according to facial rotation degree and using combined image energy of edge intensity and brightness.