A trial has been made to find out a new method of calculating the survival rate of a fish Population utilizing the length composition data and the characteristics of the frequency curve of the length which usually is normal distribution curve. In this paper, a stochastic method is introduced and applied to calculate the survival rate of yellow croaker caught by Korean trawlers in the Yellow Sea and the East China Sea in 1971. The results are as follows : Mean of survival rate 0.46089 Variance 0.03073 Standard deviation 0.17529 95 percent confidence interval 0.36040-0.56138.
In this paper, we investigated mean estimation methods in two-phase sampling. Under the fixed expected cost we reviewed the optimal sample sizes, minimum variances and approximate unbiased variance estimators for usual ratio estimator, stratified sample mean with proportional allocation and Rao's allocation of the second phase sample. Also we proposed combined ratio estimator, which uses both ratio estimation and stratification and derived optimal sample size, minimum variance and unbiased variance estimator. Through a limited simulation study, we compared estimators by design effects and came to know that ratio estimator is more efficient than stratified sample mean in some cases and inefficient in the other cases, but combined ratio estimator is more efficient than others in most cases.
This study compares the confidence interval estimation of population mean with that of population ratio, and considers whether these two estimations ensures consistency. As a result, this study suggests the following acquisition method of consistency : dealing with population mean and population ratio in the same mode, substituting the observed or experimental value of sample standard deviation for standard deviation in population in setting a confidence interval of both population mean and population ratio, and distinguishing population ratio $\hat{P}$ from its observed vale $\hat{p}$.
In this paper, a new method is developed for estimating the mean of a population which has a linear trend. This method involves drawing a sample by the modified systematic sampling, and then estimating the population mean with an adjusted estimator, not with the sample mean itself. We use the method of least squares in determining the adjusted estimator. The proposed method is shown to be more and more efficient as the linear trend becomes stronger. It turns out to be relatively efficient as compared with the conventional methods if $\sigma$$^2$the variance of the random error term in the infinite superpopulation model, is not very large.
In this paper, three main concepts are chosen for this statistical estimation study, based on previous studies: confidence interval and reliability, sampling distribution of mean and population mean estimation, and relationships between elements of confidence interval. The main objectives of this study are as follows: 1. How are the attitudes that future math teachers and high school students have to ward the statistical estimation? 2. Is there some difference in the awareness of misconceptions about the statistical estimation that future math teachers and high school students have? A study result shows that both groups have difficulties in understanding statistical concepts and their meaning used in Unit Statistical Estimation. They tend to wrongly think that the meaning of reliability is the same as that of probability. They also have difficulties in understanding sample variance in the sampling distribution of mean, which makes it impossible to connect with population mean estimation. It is shown that relationships between elements consisting of confidence interval are not consistent.
In this study, we have proposed a sampling method and an estimation method for efficiently estimating the mean of a population which has a linear trend. These methods involve drawing a sample by the so-called "centered balanced systematic sampling", which is an extension of systematic sampling, and then estimating the population mean with an adjusted estimator, not with the sample mean itself. We used the concept of interpolation in determining the adjusted estimator.\Ve compared the efficiency of the proposed estimator with those of the estimators from existing methods, under the expected mean square error criterion based on the infinite superpopulation model introduced by Cochran(1946). The proposed method is for use in the case when the sample size n(2 5) is an odd number and k(the reciprocal of the sampling fraction) is an even number. A good result was also obtained in an example using computer simulation. simulation.
Weights can be made and imposed in both sample design stage and analysis stage in a sample survey. While in design stage weights are related with sample data acquisition quantities such as sample selection probability and response rate, in analysis stage weights are connected with external quantities, for instance population quantities and some auxiliary information. The final weight is the product of all weights in both stage. In the present paper, we focus on the weight in analysis stage and investigate the effect of such weights imposed on the weighted mean when estimating the population mean. We consider a finite population with a pair of fixed survey value and weight in each unit, and suppose equal selection probability designs. Under the condition we derive the formulas of the bias as well as mean square error of the weighted mean and show that the weighted mean is biased and the direction and amount of the bias can be explained by the correlation between survey variate and weight: if the correlation coefficient is positive, then the weighted mein over-estimates the population mean, on the other hand, if negative, then under-estimates. Also the magnitude of bias is getting larger when the correlation coefficient is getting greater. In addition to theoretical derivation about the weighted mean, we conduct a simulation study to show quantities of the bias and mean square errors numerically. In the simulation, nine weights having correlation coefficient with survey variate from -0.2 to 0.6 are generated and four sample sizes from 100 to 400 are considered and then biases and mean square errors are calculated in each case. As a result, in the case or 400 sample size and 0.55 correlation coefficient, the amount or squared bias of the weighted mean occupies up to 82% among mean square error, which says the weighted mean might be biased very seriously in some cases.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.158-158
/
2016
본 연구에서는 극치 분포의 오른쪽 꼬리 부분 예측 시 안정적인 확률수문량 산정하는 확률분포형과 매개변수 추정 방법을 평가하기 위해 Monte Carlo 모의를 수행하였다. 수문자료의 빈도해석에 적합한 것으로 알려진 generalized extreme value (GEV), Gumbel (GUM), generalized logistic (GLO), gamma3 (GAM3), normal (NOR), log-normal3 (LN3) 총 6개의 확률분포형을 바탕으로 오른쪽 꼬리 부분의 확률수문량 추정 성능을 모의 실험을 통해 평가하고자 한다. 30년 이상 자료를 보유한 기상청 지점의 지속기간별 연최대값 자료를 분석한 결과를 바탕으로 모분포를 GEV분포로 선정하였으며 평균이 1.0, 표준편차 0.5, 왜곡도 계수는 0.5, 1.0, 2.0, 3.0, 4.0이 되도록 가정하였다. 또한 자료 길이에 따른 성능 평가를 위해 표본 크기 20, 50, 100, 150, 200개에 대해 분석을 수행하였다. 위와 같은 가정으로 총 25종류(왜곡도계수 5개 ${\times}$ 표본 크기 5개)의 발생된 모분포에 6가지의 확률분포형과 3가지의 매개변수 추정방법(모멘트법, 최우도법, 확률가중모멘트법)을 조합한 18가지의 모델을 비교 분석해보았다. 평가방법으로는 평균 제곱근 오차(Root Mean Square Error, RMSE), 편의(bias), 평균 상대오차(Mean Relative Difference, MRD), 평균 절대 상대오차(Mean Absolute Relative Difference, MARD)를 사용하여 적용 모델의 성능을 비교 분석하였다.
Communications for Statistical Applications and Methods
/
v.2
no.1
/
pp.155-165
/
1995
초모집단(superpopulation)으로 부터 반복적으로 유한모집단을 추출할 때, 이미 조사된 자료들을 이용하면 현재의 유한모집단 모수들을 ㄷ더 효율적으로 추정할 수 있다. 이러한 문제에 대하여 Ericson(1969)이 유한모집단 표본추출에서 베이지안 분석을 하였고, Ghosh와 Meeden(1986)은 정규 초모집단을 가정하여 유한모집단 평균의 경험적 베이즈 추정을 하였다. Nandram과 Sedransk (1993)는 Ghosh와 Meeden(1986)의 유한모집단들의 분산이 모두 같다는 가정들을 완화하여 유한집단 평균의 경험적 베이즈 추정을 하였다. 본 연구는 Nandram과 Sedransk의 결과를 층과표본추출의 경우로 일반화 하였다.
Journal of the Korean Data and Information Science Society
/
v.11
no.2
/
pp.279-293
/
2000
This article suggests two change-point estimators which are modifications of Carlstein(1988) change-point estimators with rank functions and mean functions where there is one change-point in a mean function. A comparison study of Carlstein(1988) estimators and proposed estimators is done by simulation on the mean, the MSE, and the proportion of matching true change-point.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.