With the increasingly diverse, sophisticated and complex character animations that can be represented in 3D animations, the importance of rigging, which can most directly affect animating quality, is becoming more and more important. In addition, rapidity is another crucial aspect of 3D animation production. So, the importance of technical director's role which is accurate and rapid handling of rigging pipeline building and immediate application and, corrections of errors during the longest and manpower consuming animation production is more becoming key. Baek Ji Won and Kim Jae-woong (2014) said, "The technical director is adding new importance to the new job, which is created by 3D animation, in conjunction with the limited production period, manpower, budget and production process." Most major overseas studios are developing in-house software to handle rigging and animation processes. Software development code is used to freely develop and modify production pipelines in accordance with the direction of the work. They are making efforts to build an optimal environment for animators. However, too many efforts and ineffective efforts have been made to develop, adapt, and stabilize the rigging process for small producers, creators, and students who do not have the capacity to develop their own in-house software or hire a technical director. This study suggests the most suitable auto-rigging tool among the many auto-rigging tools released in the market, and suggests the most accurate and quick auto-rigging process setting method for those who have insufficient knowledge about 3D character rigging. The efficiency of use of auto-rigging tool was examined.
Purpose: Until now, the process was improved by the needs of experimenters personally. But recently, suggestion system in hospital has been activated in various ways. So the department of nuclear medicine laboratory is also aware of the need of operation improvement using suggestion system. It is intend to assist in the development by sharing excellent suggestion cases with other hospitals. Material & Method: A total of 124 suggestion cases from January 2007 to March 2010 were analyzed. Suggestion cases were divided into customer satisfaction, cost reduction, improved testing methods, equipment, environmental improvement, and computational system. Result: Suggestion cases of environmental improvement and computational system were accounted for 26.6% as 33 cases, respectively. Suggestion for customer satisfaction is 25.8% as 32 in a total of 124 cases. Conclusion: Activation of the awareness of operation improvement is induced by suggestion system. By securing system of operation improvement, employees' ideas can lead to the production and systematization. Furthermore, it enhances hospital competitiveness and promotes the development of the hospital.
The objectives of this study was to examine the effect of Interactive Video Game on cognitive information processing the elderly. Sixty elderly were attended in this study. Their ages ranged from 65 to 70, with a mean age of 67.60 years. The subjects were randomly assigned to one of three experimental conditions: (1) interactive video game group (n=20), (2) aerobic exercise group (n=20), (3) control group (n=20). The experimental design of this study was analyzed using two-way ANOVAs with repeated measures of groups and time. Cognitive function was assessed by neuroelectrical response, and ERP analysis. The results of the study showed that the interactive video game group and aerobic exercise group showed no significant statistical differences in the response time, response accuracy, amplitude and potential of the performance of the exercise in cognitive function and ERP analysis, but improved the interaction video game group and aerobic exercise (walking) group over the control group. It was concluded that long-term aerobic exercise like interactive video game is associated with attenuation of cognitive decline in the elderly.
When the numerical analysis is carried out, it is necessary to set proper elements as a feature of analysis domains for more accurate simulations. In this study, Distinct Element Method(DEM) is applied, only considering repulsive force and tensile force except for frictional force and resisting force of particle. When the filled particles with initial Quad-tree type is relocated by DEM, a blank space existing among the particles can be minimized because the shape of particle is circular. Finally, it is the effective feature that the centroidal disposion of the particles is similar to an equilateral triangle. Triangular mesh are formed by using the Delaunay triangular technique on these relocated particles, the quality of triangular mesh is more improved by carrying out Laplace interpolations. The compared result of Aspect Ratio before and after the Laplace interpolation is shown that although the quality of triangular mesh made by DEM is good, the later triangular mesh are higher quality than the formers. In this study, although the developed technique takes a longer calculational time than the previous technique to generate triangular mesh, it is considered that the applicable possibility is very high in the generation of finite element mesh about wave analysis and various numerical simulation to need a complex or reappearance of exact topography.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.32
no.6
/
pp.553-560
/
2020
This paper presents an algorithm for identifying and eliminating errors by seagrasses in coastal bathymetry surveying using drone and HD camera. Survey errors due to seagrasses were identified, segmentated and eliminated using a L∗a∗b color space model. Bathymetry survey using a drone and HD camera has many advantages over conventional survey methods such as ship-board acoustic sounder or manual level survey which are time consuming and expensive. However, errors caused by sea bed reflectance due to seagrasses habitat hamper the development of new surveying tool. Seagrasses are the flowering plants which start to grow in November and flourish to maximum density until April in Korea. We developed a new algorithm for identifying seagrasses habitat locations and eliminating errors due to seagrasses to get the accurate depth survey data. We tested our algorithm at Wolpo beach. Bathymetry survey data which were obtained using a drone with HD camera and calibrated to eliminate errors due to seagrasses, were compared with depth survey data obtained using ship-board multi-beam acoustic sounder. The abnormal bathymetry data which are defined as the excess of 1.5 times of a standard deviation of random errors, are composed of 8.6% of the test site of area of 200 m by 300 m. By applying the developed algorithm, 92% of abnnormal bathymetry data were successfully eliminated and 33% of RMS errors were reduced.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.3
/
pp.141-148
/
2021
This paper presents a method to detect zebra-crossing using deep learning which combines SegNet and ResNet. For the blind, a safe crossing system is important to know exactly where the zebra-crossings are. Zebra-crossing detection by deep learning can be a good solution to this problem and robotic vision-based assistive technologies sprung up over the past few years, which focused on specific scene objects using monocular detectors. These traditional methods have achieved significant results with relatively long processing times, and enhanced the zebra-crossing perception to a large extent. However, running all detectors jointly incurs a long latency and becomes computationally prohibitive on wearable embedded systems. In this paper, we propose a model for fast and stable segmentation of zebra-crossing from captured images. The model is improved based on a combination of SegNet and ResNet and consists of three steps. First, the input image is subsampled to extract image features and the convolutional neural network of ResNet is modified to make it the new encoder. Second, through the SegNet original up-sampling network, the abstract features are restored to the original image size. Finally, the method classifies all pixels and calculates the accuracy of each pixel. The experimental results prove the efficiency of the modified semantic segmentation algorithm with a relatively high computing speed.
Won, Taeyeon;Eo, Yang Dam;Sung, Hong ki;Chong, Kyu soo;Youn, Junhee
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.6
/
pp.573-581
/
2020
Using CCTV images and weather parameters, a method for estimating PM (Particulate Matter) index was proposed, and an experiment was conducted. For CCTV images, we proposed a method of estimating the PM index by applying a deep learning technique based on a CNN (Convolutional Neural Network) with ROI(Region Of Interest) image including a specific spot and an full area image. In addition, after combining the predicted result values by deep learning with the two weather parameters of humidity and wind speed, a post-processing experiment was also conducted to calculate the modified PM index using the learned regression model. As a result of the experiment, the estimated value of the PM index from the CCTV image was R2(R-Squared) 0.58~0.89, and the result of learning the ROI image and the full area image with the measuring device was the best. The result of post-processing using weather parameters did not always show improvement in accuracy in all cases in the experimental area.
KIPS Transactions on Computer and Communication Systems
/
v.11
no.10
/
pp.373-380
/
2022
This paper presents a deep learning based group synchronization that supports networked immersive interactions between remote users. The goal of group synchronization is to enable all participants to synchronously interact with others for increasing user presence Most previous methods focus on NTP-based clock synchronization to enhance time accuracy. Moving average filters are used to control media playout time on the synchronization server. As an example, the exponentially weighted moving average(EWMA) would be able to track and estimate accurate playout time if the changes in input data are not significant. However it needs more time to be stable for any given change over time due to codec and system loads or fluctuations in network status. To tackle this problem, this work proposes the Deep Group Synchronization(DeepGroupSync), a group synchronization based on deep learning that models important features from the data. This model consists of two Gated Recurrent Unit(GRU) layers and one fully-connected layer, which predicts an optimal playout time by utilizing the sequential playout delays. The experiments are conducted with an existing method that uses the EWMA and the proposed method that uses the DeepGroupSync. The results show that the proposed method are more robust against unpredictable or rapid network condition changes than the existing method.
Several studies have been conducted to analyze the risk of ground subsidence occurring in urban areas. Recently, the correlation between the density of underground utilities (i.e., the quantity of buried utilities in the analysis area) and the recorded ground subsidence has been explored to analyze such risk through. Choi et al. (2021) proposed an algorithm to optimize the correlation between the ground subsidence and normalized linear density of underground pipelines. In this study, the optimization algorithm was modified for analysis based on the risk grade. The analysis results using the modified optimization algorithm were compared with the correlation analysis results between the density of underground utilities and recorded ground subsidence presented by Choi et al. (2021). Compared with Choi et al. (2021), three analysis results showed equal or higher accuracy in the correlation analysis with recorded ground subsidence according to risk grade. In particular, for R100, it was divided into five grades and compared with the ratio of the recorded ground subsidence that occurred in grades 4 or higher. As a result, Choi et al. (2021) showed that 86% of recorded ground subsidence occurred in grades 4 or higher, whereas this study showed 93%. It was confirmed that the accuracy of the modified optimization algorithm was improved. The modified optimization algorithm can be applied to develop a ground subsidence risk map for each grade in an urban area, which can be used as basic data for decision-making for underground utility maintenance.
Journal of the Korea Institute of Building Construction
/
v.22
no.6
/
pp.681-688
/
2022
In this study, the process of drone photography, automatic volume calculation, total floor area conversion, and waste calculation was constructed as a QGIS plug-in to predict the demolition waste (DW) generated in an aged area where drawing information or building information is uncertain. Through a case study, the high consistency between the automatically calculated volume using the drone and the BIM volume based on the field measurement was confirmed. Field application was carried out for the planned demolition work site, and the consistency between the drone-based volume and the actual measurement-BIM-based volume was reconfirmed. The waste generation unit was applied and the amount of DW was calculated by setting the floor height and building type, and the entire process was completed within 6 hours. Although the difference between building information and building objects through drones occurred according to the setting of temporary structures, loads, and floor heights, it was found that the actual amount of DW was generated more than the initial estimate. It is expected that measures to improve the accuracy of volume and floor area conversion will be required through case studies in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.