• Title/Summary/Keyword: 모수적 추정

Search Result 734, Processing Time 0.034 seconds

The Nonparametric Estimation of Interest Rate Model and the Pricing of the Market Price of Interest Rate Risk (비모수적 이자율모형 추정과 시장위험가격 결정에 관한 연구)

  • Lee, Phil-Sang;Ahn, Seong-Hark
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.73-94
    • /
    • 2003
  • In general, the interest rate is forecasted by the parametric method which assumes the interest rate follows a certain distribution. However the method has a shortcoming that forecasting ability would decline when the interest rate does not follow the assumed distribution for the stochastic behavior of interest rate. Therefore, the nonparametric method which assumes no particular distribution is regarded as a superior one. This paper compares the interest rate forecasting ability between the two method for the Monetary Stabilization Bond (MSB) market in Korea. The daily and weekly data of the MSB are used during the period of August 9th 1999 to February 7th 2003. In the parametric method, the drift term of the interest rate process shows the linearity while the diffusion term presents non-linear decline. Meanwhile in the nonparametric method, both drift and diffusion terms show the radical change with nonlinearity. The parametric and nonparametric methods present a significant difference in the market price of interest rate risk. This means in forecasting the interest rate and the market price of interest rate risk, the nonparametric method is more appropriate than the parametric method.

  • PDF

반복측정된 포아송 자료의 GEE 분석에서 산포모수의 역할에 관한 연구

  • 박태성;신민웅
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.155-165
    • /
    • 1995
  • 반복측정자료의 분석을 위해 제안된 Liang and Zeger(1986)의 회귀모형은 일반화추정식(generalized estimationg equations, GEE)을 이용하여 모형의 모수를 추정한다. 이 모형은 반복측정된 반응변수와 설명변수들과의 관계를 추정하는 것이 주된 목적이기 때문에 회귀모수는 중요한 모수로 간주되나 산포모수는 중요하지 않은 장애모수(nuisance parameters)로 간주된다. 일반적으로 GEE 분석에서 회귀모수의 추정량은 산포모수에 상관없이 일치적(consistent)으로 얻어진다고 알려져 있다. 그러나 본 논문에서는 포아송분포를 따르는 반복측정자료에 대한 사례연구와 모의 실험을 통해서 일반적으로 믿어져왔던 것과는 달리 GEE 방법이 산포모수에 민감하게 영향을 받고 있음을 보였다. 특히 산포모수의 값이 일정하지 않은 경우에는 GEE 방법이 산포모수에 민감 하게 영향을 받고 있음을 보였다. 특히 산포모수의 값이 일정하지 않은 경우에는 GEE 방법에서 밝혀진 회귀모수 추정량의 일치성에도 문제가 발생할 수 있음을 보였다.

  • PDF

비모수 회귀모형의 차분에 기저한 분산의 추정에 대한 고찰

  • 김종태
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.121-131
    • /
    • 1998
  • 이 논문의 목적은 비모수 회귀모형에 있어서의 오차의 분산을 추정하는 방법들 중 차분에 기저한 방법 (difference-based methods)을 이용한 기존의 추정량들을 비교 분석하는데 있다. 특히 점근적인 최적 이차 차분에 기저한 Hall과 Kay, Titterington(1990)의 HKT 추정량에 대한 그들의 추정량에 대한 문제점들을 제시하고, HKT추정량과, GSJS추정량, Rice추정량에 대하여 모의 실험을 이용하여 모수에 대한 수렴 속도를 비교 분석 하였다. 또한 GSJS 추정량에 대한 일치성과 수렴 속도를 보였다.

  • PDF

자본자산가격의 운동법칙을 표상하는 연속시간 확률매분방정식의 추정방법 - 비시뮬레이션 방법 -

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.10 no.1
    • /
    • pp.1-44
    • /
    • 2004
  • 연속시간모형은 시간의 흐름에 대응되는 자본자산의 운동의 성질과 시간의 흐름에 따라 형성되는 자본자산의 가격을 동시적으로 파악할 수 있는 것이 큰 장점이다. 연속시간 확률미분방정식을 구성하는 표류함수와 확산함수가 폐형해나 해석적 형태로 존재하지 않는 경우가 대부분이다. 여기에서 모수추정의 어려움이 발생한다. 전이 확률밀도함수의 인지 또는 발견의 어려움과 표류함수와 확산함수의 적분 불가능성은 최대가능도법의 사용을 어렵게 만든다. 여기에서 모수방법 보다는 비모수방법을 통하여 연속 확률 미분방정식을 추정하려는 성향이 존재한다. 밀도를 모르면 표본적률을 사용하여 모수를 추정할 수 있으므로 일반화 적률법이 연속시간 확률미분방정식의 모수 추정과 검정에 사용되고 있다. 전이밀도의 값을 시뮬레이션을 통하여 얻는 마코브연쇄 몬테카를로 방법, 전이밀도를 무한소 생성작용소를 통하여 얻는 방법, 비 모수방법, 여러 종류의 전개에 의하여 얻은 표류함수와 확산함수의 전이밀도에 대한 최대가능도법 등 여러 종류의 연속시간 확률미분방정식의 실증분석에서 사용되고 있다. 이 논문에서는 연속시간 확률미분방정식의 실증분석 방법들을 정리하는데 목적이 있다. 이일균(2004)은 이 논문과의 자매논문으로 시뮬레이션에 의한 확률미분방정식의 추정을 다루고 있어 시뮬레이션방법은 그 논문에 미룬다.

  • PDF

Estimation of confidence interval in exponential distribution for the greenhouse gas inventory uncertainty by the simulation study (모의실험에 의한 온실가스 인벤토리 불확도 산정을 위한 지수분포 신뢰구간 추정방법)

  • Lee, Yung-Seop;Kim, Hee-Kyung;Son, Duck Kyu;Lee, Jong-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.825-833
    • /
    • 2013
  • An estimation of confidence intervals is essential to calculate uncertainty for greenhouse gases inventory. It is generally assumed that the population has a normal distribution for the confidence interval of parameters. However, in case data distribution is asymmetric, like nonnormal distribution or positively skewness distribution, the traditional estimation method of confidence intervals is not adequate. This study compares two estimation methods of confidence interval; parametric and non-parametric method for exponential distribution as an asymmetric distribution. In simulation study, coverage probability, confidence interval length, and relative bias for the evaluation of the computed confidence intervals. As a result, the chi-square method and the standardized t-bootstrap method are better methods in parametric methods and non-parametric methods respectively.

동적 불완전 수리 모형 및 분석 절차의 개발

  • 백상엽;임태진;홍정식;이창훈;김태운
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.719-724
    • /
    • 1996
  • 본 연구는 유지, 보수되는 상시 작동 시스템에 대한 신뢰성 분석을 위해 동적 불완전 수리모형 및 분석 절차의 개발을 수행하였다. 또한 수리 상태에 대한 데이타가 완전히 잠재적(masked)이라 하더라도 기본 분포(base-line distribution)가 와이블 분포라는 가정하에 모수적 추정 절차를 개발하였다. 개발된 추정 절차는 기본적으로 EM(Expectation and Maximization : EM) 알고리즘의 틀(framework)을 유지하고 있다. 특히 최소 수리 특성으로 인해 분포가 변화함에 따라 발생하는 추정의 어려움을 해결하기 위해 데이타 변환(transformation)식을 제시하고 이러한 변환 데이타를 사용함으로써 추가적 데이타의 요구없이 잠재적 데이타를 사용하여 추정을 가능하게 하는 모수 추정 알고리즘을 제시하였다.

  • PDF

베이지안 방법에 의한 K개 지수분포 모수들의 기하평균 추정에 관한 연구

  • Kim, Dae-Hwang;Kim, Hye-Jung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.169-174
    • /
    • 2002
  • 본 연구는 k개 지수분포 모수들의 기하평균에 대한 베이지안추정 방법을 제시하였다. 이를 위해 Tibshirani가 제안한 직교변환법으로 비정보적 사전확률분포를 도출하여 모수들의 결합사후확률분포를 유도해 내었으며, 이 분포 하에서 가중 몬테칼로 방법을 사용하여 기하평균을 추정하는 절차를 제안하였다. 모의실험과 실제자료의 예를 통해 제안된 베이지안 추정의 유효성 및 효용성을 보였으며, 본 연구에서 제안한 사전확률분포가 전통적인 포함확률을 기준으로 볼 때, Jeffrey의 사전확률분포 보다 더 유효한 추정을 함을 보였다.

  • PDF

Residual-based copula parameter estimation (잔차를 이용한 코플라 모수 추정)

  • Na, Okyoung;Kwon, Sunghoon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.267-277
    • /
    • 2016
  • This paper considers we consider the estimation of copula parameters based on residuals in stochastic regression models. We prove that a semiparametric estimator using residual empirical distributions is consistent under some conditions and apply the results to the copula-ARMA model. We provide simulation results for illustration.

깁스표본기법을 이용한 와이블분포의 모수추정

  • 이우동;이창순;강상길
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.3 no.1
    • /
    • pp.13-21
    • /
    • 1998
  • 와이블분포의 척도모수와 형상모수를 베이지안 방법을 이용하여 추정한다. 깁스표본법을 사용하여 모수들에 대한 추정, 결합사후확률분포와 주변사후확률분포를 구한다. 9개의 열 전달기기자료와 10개의 인위적인 자료를 이용하여 제안된 방법을 적용하여 사례를 연구한다.

An Estimation of Parameters in Weibull Distribution using Gibbs Sampler (깁스표본기법을 이용한 와이블분포의 모수추정)

  • 이우동;이창순;강상길
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.521-533
    • /
    • 1997
  • 와이블분포에서 척도모수와 형상모수를 베이지안 방법을 이용하여 추정한다. 깁스표본법을 사용하여 모수들에 대한 추정, 결합사후확률분포 와 주변사후확률분포를 구한다. 9개의 열 전달기기자료와 10개의 인위적인 자료를 이용하여 제안된 방법을 적용하여 사례를 연구한다.

  • PDF