• Title/Summary/Keyword: 모서리 균열

Search Result 39, Processing Time 0.028 seconds

Viscoelastic Analysis for Behavior of Edge Cracks at the Bonding Interface of Semiconductor Chip (반도체 칩 접착 계면에 존재하는 모서리 균열 거동에 대한 점탄성 해석)

  • 이상순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.309-315
    • /
    • 2001
  • The Stress intensity factors for edge cracks located at the bonding interface between the elastic semiconductor chip and the viscoelastic adhesive layer have been investigated. Such cracks might be generated due to stress singularity in the vicinity of the free surface. The domain boundary element method(BEM) has been employed to investigate the behavior of interface stresses. The overall stress intensity factor for the case of a small interfacial edge crack has been computed. The magnitude of stress intensity factors decrease with time due to viscoelastic relaxation.

  • PDF

Effect of Crack Control Strips at Opening Corners on the Strength and Crack Propagation of Downsized Reinforced Concrete Walls (축소 철근콘크리트 벽체의 내력과 균열진전에 대한 개구부모서리 균열제어 띠의 영향)

  • Wang Hye-Rin;Yang Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.40-47
    • /
    • 2022
  • The present study aimed to examine the effectiveness of different techniques for controlling the diagonal cracks at the corners of openings on the strength, deformation, and crack propagation in reinforced concrete walls. The crack control strip proposed in this study, the conventional diagonal steel reinforcing bars, and stress-dispersion curved plates were investigated for controlling the diagonal cracks at the opening corners. An additional crack self-healing function was also considered for the crack control strip. To evaluate the volume change ratio and crack width propagation around the opening, downsized wall specimens with a opening were tested under the diagonal shear force at the opening corner. Test result showed that the proposed crack control strip was more effective in reducing the volume change and controlling the crack width around the opening when compared to the conventional previous methods. The crack control strip with crack healing feature displayed the superior performance in improving the strength of the wall and reducing the crack width while healing cracks occurred in the previous tests.

Viscoelastic Analysis of Stress Intensity Factor for Interface Edge Crack in a Unidirectional Liminate (단일방향 복합재료의 공유면에 존재하는 계면 모서리균열의 점탄성 해석)

  • 이상순;김범식
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.129-134
    • /
    • 1997
  • Interfacial stress singularity in a unidirectional two-dimensional laminate model consisting of an elastic fiber and a viscoelastic matrix has been investigated using the time-domain boundary element method. First, the interfacial singular stresses between the fiber and the matrix of a unidirectional laminate subjected to a uniform transverse tensile strain have been investigated near the free surface, but without any defect or any edge crack. Such a stress singularity might lead to fiber-matrix debonding or interfacial edge cracks. Then, the overall stress intensity factor for the case of a small interfacial edge crack of length a has been computed.

  • PDF

Boundary Element Analysis of Stress Intensity Factor for Interface Edge Crack in A Unidirectional Composite (단일방향 복합재료의 공유면에 존재하는 모서리 균열의 경계요소해석)

  • 이상순;김정규
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-83
    • /
    • 1996
  • The overall stress intensity factor for edge crack located at the interface between fiber and matrix of a unidirectional graphite/epoxy laminate model subjected to a transverse tensile strain have been computed using the boundary element method. Such crack might be generated due to a stress singularity in the vicinity of the free surface. The amplitude of complex stress intensity factor has the constant value at large crack lengths.

  • PDF

Boundary Element Analysis for Edge Cracks at the Bonding Interface of Semiconductor Chip (반도체 칩 접착계면의 모서리 균열에 대한 경계요소 해석)

  • 이상순
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.25-30
    • /
    • 2001
  • The stress intensity factors for edge cracks located at the bonding interface between the semiconductor chip and the adhesive layer subjected to a uniform transverse tensile strain are investigated. Such cracks might be generated due to a stress singularity in the vicinity of the free surface. The boundary element method (BEM) is employed to investigate the behavior of interface stresses. The amplitude of complex stress intensity factor depends on the crack length, but it has a constant value at large crack lengths. The rapid propagation of interface crack is expected if the transverse tensile strain reaches a critical value.

  • PDF

A Study on Damage Tolerance Assessment for the Butt Lap Joint Structure with the Effects of Fretting Fatigue Cracks (프레팅 피로균열 영향을 고려한 항공기 맞대기중첩연결 구조 손상허용성 연구)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • The butt lap joint structures which are usually designed by the concept of slow crack growth damage tolerance, show frequently the behaviors of multiple site fatigue crack growth around the fastener hole edges due to the fretting between the two jointed parts. In this paper, experimental tests of fatigue crack growth have been performed of a bolted butt lap joint structure having an initial corner crack at the fastener hole edge, with different fretting conditions under a flight load spectrum. The obtained test results were reviewed to investigate the effects of fretting fatigue cracks on the damage tolerance crack growth life. Computations of corner crack growth were also carried out using an existed model to compare with test results.

Inclined Edge Crack in a Piezoelectric Material Under Antiplane Loads (압전재료에 대한 면외하중하의 모서리 경사 균열)

  • Choi, Sung Ryul;Sah, Jong Youb;Jeong, Jae Tack
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.589-596
    • /
    • 2015
  • The occurrence of an inclined edge crack in transversely piezoelectric material is analyzed. Concentrated antiplane mechanical and inplane electrical loads are applied at the boundary and crack surface, respectively. The crack surfaces are assumed to be impermeable to the electric field. Using the Mellin transform with the introduction of a generalized displacement vector, the problem is formulated, and the Wiener-Hopf equation is derived. By solving the equation, the solution is obtained in a closed form. The intensity factors of the stress, the electric displacement, and the energy release rate are obtained for any crack length and inclination angle. These solutions can be used as fundamental solutions and can be superimposed to represent any arbitrary electromechanical loading.

Critical Angle Analysis of Elliptical Corner Cracks in Mechanical Joints by Weight Function Method and Finite Element Analysis (가중함수법과 유한요소해석에 의한 기계적 체결부에 존재하는 타원형 모서리균열의 임계 경사각 해석)

  • Heo, Sung-Pil;Yang, Won-Ho;Ko, Myung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • There is the high possibility of crack initiation from mechanical joints, which are widely used in aircraft fuselages, due to the development of stress concentration and contact pressure. In this paper, the mixed-mode stress intensity factors at the surface and deepest points of an inclined quarter elliptical corner crack in mechanical joints are analyzed by the weight function method. The coefficients included in the weight function are obtained by finite element analyses for reference loadings. Critical angle at which mode I stress intensity factor becomes maximum is determined by analyzing the variation of stress intensity factors along incline angle of crack and the effects of the amount of clearance and crack depth on the critical angle are investigated.

Finite Element Analysis of a Rotating Disc with a Corner Crack Originating at the Bolt Holes (회전체 원판의 볼트구멍에 존재하는 모서리균열의 유한요소해석)

  • 한상배;이진호;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3055-3062
    • /
    • 1993
  • The objective of this paper is to obtain stress intensity factor solutions for a corner crack originating at bolt holes in a rotating disc. Initially two-dimensional finite element analyses of a rotating disc with bolt holes are performed to determine the maximum stress region. Subsequently three-dimensional finite element analyses of a rotating disc with a corner crack originating at the bolt holes are performed with a variety of crack geometries. According to the numerical results, the maximum stress intensity factor, with an increase in crack depth ratio, was observed at the surface of the plate due to the interference effect of corner crack and disc bore.

Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints (복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.45-53
    • /
    • 2003
  • The experimental and numerical investigations on the failure characteristics of the secondary bonded composite single-lap joints were performed. The initiations and growths of cracks were observed using CCD camera and acoustic emission sensor during the tension tests of the joint specimens. The structural behaviors of the specimens were predicted by the geometric nonlinear two-dimensional finite element analysis. The three types of observed initial cracks were included in each finite element models and the strain energy release rates of each specimen models were calculated by VCCT(Virtual Crack Closure Technique) technique. The tension tests showed that the initial cracks occurred in the 60∼90% of final failure loads and the major failure modes of the specimens were adhesive failure and the delamination between the 1st and 2nd ply of laminate. The specimens with the thicker bondline had earlier crack initiation loads but higher crack propagation resistance and eventually better loading capability. The delaminations were mostly observed in the thicker bondline specimens. The mode I values of calculated strain energy release rates were higher than the mode II values in the all specimen models considering the three types of initial cracks. The mode I and total strain energy release rates were calculated as higher values in the order of initial crack in the edge interface, comer interface and delamination between the plies of laminate.